WANG Yiyuan, LIU Siyi, JIANG Honghui, PU Wen, LIU Canyan, XU Jiake. Advances in mitochondrial autophagy regulation of bone remodeling and the role of drug intervention[J]. Journal of Guangxi Medical University, 2024, 41(11): 1483-1490. DOI: 10.16190/j.cnki.45-1211/r.2024.11.006
Citation: WANG Yiyuan, LIU Siyi, JIANG Honghui, PU Wen, LIU Canyan, XU Jiake. Advances in mitochondrial autophagy regulation of bone remodeling and the role of drug intervention[J]. Journal of Guangxi Medical University, 2024, 41(11): 1483-1490. DOI: 10.16190/j.cnki.45-1211/r.2024.11.006

Advances in mitochondrial autophagy regulation of bone remodeling and the role of drug intervention

More Information
  • Received Date: September 10, 2024
  • Bone remodeling is a complex process that includes two mutually coordinated phases of bone resorption and bone formation, which plays an important role in preventing bone aging and increasing bone density. In recent years, studies have shown that mitochondrial autophagy (mitophagy) plays an important regulatory role in the process of bone resorption and bone formation. Mitochondrial autophagy is a special cellular clearance process that maintains normal mitochondrial function and metabolism by removing damaged mitochondria. With the in-depth understanding of the regulatory mechanisms of mitophagy, combined with the study of drug interventions, it is expected that more effective treatments will be developed to improve the quality of life of patients with orthopedic-related diseases such as osteoporosis. At the same time, it will also provide new perspectives and strategies for the prevention and treatment of orthopedic-related diseases.

  • [1]
    MARCHI S, GUILBAUD E, TAIT S W G, et al. Mitochondrial control of inflammation[J]. Nature reviews immunology, 2023, 23(3): 159-173. doi: 10.1038/s41577-022-00760-x
    [2]
    胡舒婷, 李欣瑜, 陈晗, 等. 干扰ALAS2表达通过下调K562细胞线粒体自噬受体BNIP3L影响红系分化[J]. 中国实验血液学杂志, 2020, 28(5): 1710-1717.
    [3]
    EASTELL R, O'NEILL T W, HOFBAUER L C, et al. Postmenopausal osteoporosis[J]. Nature reviews disease primers, 2016, 2: 16069. doi: 10.1038/nrdp.2016.69
    [4]
    MOON Y J, ZHANG Z K, BANG I H, et al. Sirtuin 6 in preosteoclasts suppresses age- and estrogen deficiency-related bone loss by stabilizing estrogen receptor Α[J]. Cell death and differentiation, 2019, 26(11): 2358-2370. doi: 10.1038/s41418-019-0306-9
    [5]
    金芳全, 樊成虎, 唐晓栋, 等. 线粒体功能障碍与骨质疏松症相关性研究进展[J]. 上海交通大学学报(医学版), 2023, 43(6): 761-767.
    [6]
    SHENG Z H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring[J]. Trends in cell biology, 2017, 27(6): 403-416. doi: 10.1016/j.tcb.2017.01.005
    [7]
    KIM I, RODRIGUEZ-ENRIQUEZ S, LEMASTERS J J. Selective degradation of mitochondria by mitophagy[J]. Archives of biochemistry and biophysics, 2007, 462(2): 245-253. doi: 10.1016/j.abb.2007.03.034
    [8]
    KUMAR A A, KELLY D P, CHIRINOS J A. Mitochondrial dysfunction in heart failure with preserved ejection fraction[J]. Circulation, 2019, 139(11): 1435-1450. doi: 10.1161/CIRCULATIONAHA.118.036259
    [9]
    李婷婷, 王钦鹏, 刘晓庆, 等. 线粒体自噬对缺血性脑卒中的作用及其机制研究进展[J]. 中风与神经疾病杂志, 2024, 41(1): 41-46.
    [10]
    SHIN W H, PARK J H, CHUNG K C. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease[J]. BMB reports, 2020, 53(1): 56-63. doi: 10.5483/BMBRep.2020.53.1.283
    [11]
    ZHANG H T, MI L, WANG T, et al. PINK1/Parkin-mediated mitophagy play a protective role in manganese induced apoptosis in SH-SY5Y cells[J]. Toxicology in vitro: an international journal published in association with BIBRA, 2016, 34: 212-219.
    [12]
    WEN S Q, WANG L, ZHANG C F, et al. PINK1/Parkin-mediated mitophagy modulates cadmium-induced apoptosis in rat cerebral cortical neurons[J]. Ecotoxicology and environmental safety, 2022, 244: 114052. doi: 10.1016/j.ecoenv.2022.114052
    [13]
    程婧, 魏林, 李苗. 线粒体动力学及线粒体自噬调控机制的研究进展[J]. 生理学报, 2020, 72(4): 475-487.
    [14]
    ICHIMURA Y, KUMANOMIDOU T, SOU Y S, et al. Structural basis for sorting mechanism of p62 in selective autophagy[J]. The Journal of biological chemistry, 2008, 283(33): 22847-22857. doi: 10.1074/jbc.M802182200
    [15]
    MOYZIS A G, SADOSHIMA J, GUSTAFSSON Å B. Mending a broken heart: the role of mitophagy in cardioprotection[J]. American journal of physiology Heart and circulatory physiology, 2015, 308(3): H183-H192. doi: 10.1152/ajpheart.00708.2014
    [16]
    LIU L, FENG D, CHEN G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J]. Nature cell biology, 2012, 14(2): 177-185. doi: 10.1038/ncb2422
    [17]
    宋方茗, 刘倩, 徐家科. 骨重建在细胞水平上的研究进展[J]. 广西医科大学学报, 2019, 36(12): 1867-1881. doi: 10.16190/j.cnki.45-1211/r.2019.12.001
    [18]
    WU X, LI J, ZHANG H W, et al. Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption[J]. American journal of translational research, 2017, 9(3): 1230-1242.
    [19]
    吴子菁. 基于Nrf2/ARE信号通路研究抵当汤调节线粒体自噬改善脑出血后神经损伤的作用机制[D]. 长春: 长春中医药大学, 2021.
    [20]
    高敬, 邵秉一. MiR-181a调控骨髓间充质干细胞中OPG水平及对破骨细胞活性的影响[J]. 中国细胞生物学学报, 2017, 39(1): 44-51.
    [21]
    SUN Y P, SHI X Q, PENG X D, et al. MicroRNA-181a exerts anti-inflammatory effects via inhibition of the ERK pathway in mice with intervertebral disc degeneration[J]. Journal of cellular physiology, 2020, 235(3): 2676-2686. doi: 10.1002/jcp.29171
    [22]
    SONG J Y, YANG S N, YIN R H, et al. MicroRNA-181a regulates the activation of the NLRP3 inflammatory pathway by targeting MEK1 in THP-1 macrophages stimulated by ox-LDL[J]. Journal of cellular biochemistry, 2019, 120(8): 13640-13650. doi: 10.1002/jcb.28637
    [23]
    祝震亚, 童蕾, 陆燕群. MiR-181a调控PINK1/Parkin通路对骨质疏松大鼠破骨细胞线粒体自噬的影响[J]. 解放军医学杂志, 2022, 47(6): 569-578.
    [24]
    JANG J S, HONG S J, MO S Z, et al. PINK1 restrains periodontitis-induced bone loss by preventing osteoclast mitophagy impairment[J]. Redox biology, 2024, 69: 103023. doi: 10.1016/j.redox.2023.103023
    [25]
    付应霄. OPG对破骨细胞活性的影响及其信号转导机制[D]. 扬州: 扬州大学, 2013.
    [26]
    刘庆羊. PINK1/Parkin通路在骨保护素调控破骨细胞线粒体自噬中的作用机制[D]. 扬州: 扬州大学, 2019.
    [27]
    ZHANG X K, JI R P, LIAO X H, et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation[J]. Circulation, 2018, 137(19): 2052-2067. doi: 10.1161/CIRCULATIONAHA.117.030486
    [28]
    LING W, KRAGER K, RICHARDSON K K, et al. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency[J]. JCI insight, 2021, 6(10): e146728. doi: 10.1172/jci.insight.146728
    [29]
    DUDA G N, GEISSLER S, CHECA S, et al. The decisive early phase of bone regeneration[J]. Nature reviews rheumatology, 2023, 19(2): 78-95. doi: 10.1038/s41584-022-00887-0
    [30]
    LEE S Y, AN H J, KIM J M, et al. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis[J]. Stem cell research & therapy, 2021, 12(1): 589.
    [31]
    JIN X X, SUN X L, MA X, et al. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1[J]. Cellular and molecular life sciences, 2024, 81(1): 204. doi: 10.1007/s00018-023-05043-9
    [32]
    王宇, 罗鹏, 郝世民, 等. 17β-雌二醇介导SIRT1对成骨细胞线粒体自噬的影响[J]. 解剖科学进展, 2022, 28(2): 209-212.
    [33]
    YANG X H, JIANG T L, WANG Y, et al. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats[J]. Scientific reports, 2019, 9(1): 18424. doi: 10.1038/s41598-019-44766-3
    [34]
    施诚龙, 陈冲, 高永军, 等. PI3K/AKT/mTOR信号通路在细胞自噬中作用及机制的研究进展[J]. 山东医药, 2021, 61(27): 102-105.
    [35]
    金梦. 17β -E2通过GPER/PI3K/AKT通路调节小鼠M3T3成骨细胞线粒体自噬的研究[D]. 沈阳: 中国医科大学, 2018.
    [36]
    GOYTAIN A, HINES R M, QUAMME G A. Functional characterization of NIPA2, a selective Mg2+ transporter [J]. American journal of physiology Cell physiology, 2008, 295(4): C944-C953. doi: 10.1152/ajpcell.00091.2008
    [37]
    ZHAO W, ZHANG W L, MA H D, et al. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis[J]. Scientific reports, 2020, 10(1): 3078. doi: 10.1038/s41598-020-59743-4
    [38]
    ZHANG Q, PENG W, WEI S J, et al. Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type Ⅱ collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts[J]. Biomedecine & pharmacotherapie, 2019, 118: 109367.
    [39]
    YAO H, XIANG L, HUANG Y C, et al. Guizhi Shaoyao Zhimu Granules attenuate bone destruction in mice with collagen-induced arthritis by promoting mitophagy of osteoclast precursors to inhibit osteoclastogenesis[J]. Phytomedicine: international journal of phytotherapy and phytopharmacology, 2023, 118: 154967. doi: 10.1016/j.phymed.2023.154967
    [40]
    BLASIAK J, CHOJNACKI J, SZCZEPANSKA J, et al. Epigallocatechin-3-gallate, an active green tea component to support anti-VEGFA therapy in wet age-related macular degeneration[J]. Nutrients, 2023, 15(15): 3358. doi: 10.3390/nu15153358
    [41]
    SARKAR J, DAS M, HOWLADER M S I, et al. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions[J]. Cell death & disease, 2022, 13(10): 908.
    [42]
    DUTKA M, BOBIŃSKI R, WOJAKOWSKI W, et al. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases [J]. Heart failure reviews, 2022, 27(4): 1395-1411. doi: 10.1007/s10741-021-10153-2
    [43]
    MARAHLEH A, KITAURA H, OHORI F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation[J]. Frontiers in immunology, 2019, 10: 2925. doi: 10.3389/fimmu.2019.02925
    [44]
    ZHENG L Z, WANG J L, XU J K, et al. Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model[J]. Biomaterials, 2020, 238: 119828. doi: 10.1016/j.biomaterials.2020.119828
    [45]
    CONG B Y, ZHANG Q, CAO X T. The function and regulation of TET2 in innate immunity and inflammation[J]. Protein & cell, 2021, 12(3): 165-173.
    [46]
    YANG C, TAO H Q, ZHANG H F, et al. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss[J]. Autophagy, 2022, 18(12): 2817-2829. doi: 10.1080/15548627.2022.2048432
    [47]
    GU C, ZHOU Q, HU X Y, et al. Melatonin rescues the mitochondrial function of bone marrow-derived mesenchymal stem cells and improves the repair of osteoporotic bone defect in ovariectomized rats[J]. Journal of pineal research, 2024, 76(1): e12924. doi: 10.1111/jpi.12924
    [48]
    王帆, 王鹏皓. 白藜芦醇介导SI RT1干预地塞米松诱导成骨细胞线粒体自噬的研究[J]. 中国医科大学学报, 2023, 52(2): 97-102.
    [49]
    LV Y J, YANG Y, SUI B D, et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice [J]. Theranostics, 2018, 8(9): 2387-2406. doi: 10.7150/thno.23620
    [50]
    DAI P P, MAO Y X, SUN X Y, et al. Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased akt-GSK3β signaling[J]. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017, 41(2): 661-677. doi: 10.1159/000457945
    [51]
    LI G Y, JIAN Z X, WANG H, et al. Irisin promotes osteogenesis by modulating oxidative stress and mitophagy through SIRT3 signaling under diabetic conditions[J]. Oxidative medicine and cellular longevity, 2022, 2022: 3319056.
    [52]
    MACRÌ R, MUSOLINO V, GLIOZZI M, et al. Ferula L. plant extracts and dose-dependent activity of natural sesquiterpene ferutinin: from antioxidant potential to cytotoxic effects[J]. Molecules, 2020, 25(23): 5768. doi: 10.3390/molecules25235768
    [53]
    MAITY J, BARTHELS D, SARKAR J, et al. Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy[J]. Cell death & disease, 2022, 13(5): 452.
    [54]
    MAITY J, DEB M, GREENE C, et al. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism[J]. Redox biology, 2020, 36: 101622. doi: 10.1016/j.redox.2020.101622

Catalog

    Article views (57) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return