Citation: | LIANG Yinfei, ZHOU Jingshi, ZHANG Shuqi, LI Lingwei, GU Jing, WEN Zhiyang, WU Dongxue, LI Zhicheng, ZENG Xiangli. The causal relationship between gut microbiota and tinnitus based on Mendelian randomization[J]. Journal of Guangxi Medical University, 2024, 41(10): 1390-1397. DOI: 10.16190/j.cnki.45-1211/r.2024.10.012 |
To explore the causal relationship between gut microbiota and tinnitus based on Mendelian randomization (MR) research method.
Data on the gut microbiota in individuals from the genomewide association study (GWAS) (n=18, 340) using the MiBioGen consortium, and the summary statistical data oftinnitus were obtained from published data in the UK Biobank for a two sample MR study. Using statistical model inverse variance weighting (IVW) as the main result, simple mode method, model selection method (MR-Egger), weighted median method, and weighted model were used to supplement the examination of the causal relationship between gut microbiota and tinnitus. Cochran' s Q-test and MR Egger regression were used to verify thestability and heterogeneity of the results.
IVW analysis showed that an increase in the abundance ofclass.Clostridia (OR=0.9682, 95% CI: 0.9414-0.9958, P=0.0242), genus.Ruminococcus 1 (OR=0.9594, 95% CI:0.9284-0.9916, P=0.0141), and order. Clostridiales (OR=0.9683, 95% CI: 0.9413-0.9958, P=0.0243) might reduce the risk of tinnitus; the increased abundance of phylum. Tenericutes (OR=1.0221, 95% CI: 1.0012-1.0434, P=0.0379), class. Mollicutes (OR=1.0221, 95% CI: 1.0012-1.0434, P=0.0379), genus. Desulfovibrio (OR=1.0314, 95% CI: 1.0039-1.0596, P=0.0247), and genus. unknowngenus (OR=1.0345, 95% CI: 1.0144-1.0550, P=0.0007)might increase the risk of tinnitus. No horizontal pleiotropy or heterogeneity was found in instrumental variables.
Class. Clostridia, genus. Ruminococcus 1, and order. Clostridiales may be potential protective bacterial groups for tinnitus, while phylum. Tenericutes, class Mollicutes, genus. Desulfovibrio, and genus. unknowngenus may be potential risk factors for tinnitus.
[1] |
MEGANTARA I, WIKARGANA G L, DEWI Y A, et al. The role of gut dysbiosis in the pathophysiology of tinnitus:a literature review[J]. The international tinnitus journal, 2022, 26(1): 27-41.
|
[2] |
DOIM Y, DIAS A C M, POLY-FREDERICO R C, et al. Association between polymorphism of interleukin-6 in the region-174G/C and tinnitus in the elderly with a history of occupational noise exposure[J]. Noise health, 2015, 17(79): 406-410. doi: 10.4103/1463-1741.169703
|
[3] |
ATARASHI K, TANOUE T, OSHIMA K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500(7461): 232-236. doi: 10.1038/nature12331
|
[4] |
RINNINELLA E, RAOUL P, CINTONI M, et al. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7(1): 14. doi: 10.3390/microorganisms7010014
|
[5] |
RIZZATTI G, LOPETUSO L R, GIBIINO G, et al. Proteobacteria: a common factor in human diseases[J]. BioMed research international, 2017, 2017: 9351507.
|
[6] |
LI Z C, FANG B X, YUAN L X, et al. Analysis of studies in tinnitus-related gene research[J]. Noise health, 2021, 23(111): 95-107. doi: 10.4103/nah.nah_57_21
|
[7] |
SHULMAN A, WANG W, LUO H, et al. Neuroinflammation and tinnitus[J]. Current topics in behavioral neurosciences, 2021, 51: 161-174.
|
[8] |
WANG W, ZHANG L S, ZINSMAIER A K, et al. Neuroinflammation mediates noise-induced synaptic imbalance and tinnitus in rodent models[J]. Plos biology, 2019, 17(6): e3000307. doi: 10.1371/journal.pbio.3000307
|
[9] |
HWANG J H, CHEN J C, YANG S Y, et al. Expression of tumor necrosis factor-alpha and interleukin-1beta genes in the cochlea and inferior colliculus in salicylate-induced tinnitus[J]. Journal of neuroinflammation, 2011, 8: 30. doi: 10.1186/1742-2094-8-30
|
[10] |
KUJAWA S G, LIBERMAN M C. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss[J]. Hearing research, 2015, 330(Pt B): 191-199.
|
[11] |
WU C, STEFANESCU R A, MARTEL D T, et al. Tinnitus: maladaptive auditory-somatosensory plasticity[J]. Hearing research, 2016, 334: 20-29. doi: 10.1016/j.heares.2015.06.005
|
[12] |
HWANG J H, CHEN J C, CHAN Y C. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes[J]. Plos one, 2013, 8(3): e58215. doi: 10.1371/journal.pone.00582156.005
|
[13] |
SZCZEPEK A J, HAUPT H, KLAPP B F, et al. Biological correlates of tinnitus-related distress: an exploratory study [J]. Hearing research, 2014, 318: 23-30. doi: 10.1016/j.heares.2014.10.007
|
[14] |
MARCHIORI L, DIAS A, GONCALVEZ A S, et al. Association between polymorphism of tumor necrosis factor alpha (tnfalpha) in the region-308 g/a with tinnitus in the elderly with a history of occupational noise exposure[J]. Noise health, 2018, 20(93): 37-41.
|
[15] |
MARCHIORI L, DOIM Y, MARCHIORI G M, et al. Interleukin-1 alpha gene polymorphism (IL-1alpha) and susceptibility to tinnitus in the elderly[J]. Noise health, 2019, 21(99): 77-82.
|
[16] |
SEDLEY W, PARIKH J, EDDEN R A E, et al. Human auditory cortex neurochemistry reflects the presence and severity of tinnitus[J]. The journal of neuroscience: the official journal of the society for neuroscience, 2015, 35(44):14822-14828. doi: 10.1523/JNEUROSCI.2695-15.2015
|
[17] |
DURANTI S, RUIZ L, LUGLI G A, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA[J]. Scientific reports, 2020, 10(1): 14112. doi: 10.1038/s41598-020-70986-z
|
[18] |
ULLAH H, ARBAB S, TIAN Y, et al. The gut microbiota-brain axis in neurological disorder[J]. Frontiers in neural circuits, 2023, 17: 1225875.
|
[19] |
YADAV H, JALDHI, BHARDWAJ R, et al. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: a comprehensive review[J]. Life sciences, 2023, 330: 122022. doi: 10.1016/j.lfs.2023.122022
|
[20] |
STRANDWITZ P, KIM K H, TEREKHOVA D, et al. GABA-modulating bacteria of the human gut microbiota[J]. Nature microbiology, 2019, 4(3): 396-403.
|
[21] |
SHORE S E, ROBERTS L E, LANGGUTH B. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment[J]. Neurology, 2016, 12(3): 150-160.
|
[22] |
SANNA S, VAN ZUYDAM N R, MAHAJAN A, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases[J]. Nature genetics, 2019, 51(4): 600-605. doi: 10.1038/s41588-019-0350-x
|
[23] |
XU Q, NI J J, HAN B X, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample mendelian randomization study[J]. Frontiers in immunology 2021, 12: 746998.
|
[24] |
INAMO J. Non-causal association of gut microbiome on the risk of rheumatoid arthritis: a Mendelian randomisation study[J]. Annals of the rheumatic diseases, 2021, 80(7): e103. doi: 10.1136/annrheumdis-2019-216565
|
[25] |
CANYELLES M, BORRAS C, ROTLLAN N, et al. Gut microbiota-derived tmao: a causal factor promoting atherosclerotic cardiovascular disease?[J]. International journal of molecular sciences, 2023, 24(3): 1940. doi: 10.3390/ijms24031940
|
[26] |
KURILSHIKOV A, MEDINA-GOMEZ C, BACIGALUPE R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. Nature genetics, 2021, 53(2): 156-165. doi: 10.1038/s41588-020-00763-1
|
[27] |
LI P, WANG H, GUO L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample mendelian randomization study[J]. BMC medicine, 2022, 20(1): 443. doi: 10.1186/s12916-022-02657-x
|
[28] |
LIN C, CHEN C, CHIANG H, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease[J]. Journal of neuroinflammation, 2019, 16(1): 129. doi: 10.1186/s12974-019-1528-y
|
[29] |
CANDELIERE F, MUSMECI E, AMARETTI A, et al. Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis. [J]. Microbiome research reports, 2023, 2(2): 13.
|
[30] |
EICHER T P, MOHAJERI M H. Overlapping mechanisms of action of brain-active bacteria and bacterial metabolites in the pathogenesis of common brain diseases[J]. Nutrients, 2022, 14(13): 2661. doi: 10.3390/nu14132661
|
[31] |
UMEMURA M, HONDA A, YAMASHITA M, et al. High-fat diet modulates bile acid composition and gut microbiota, affecting severe cholangitis and cirrhotic change in murine primary biliary cholangitis. [J]. Journal of autoimmunity, 2024, 148: 103287. doi: 10.1016/j.jaut.2024.103287
|
[32] |
BHATTACHARJEE D, FLORES C, WOELFEL-MONSIVAIS C, et al. Diversity and prevalence of clostridium innocuum in the human gut microbiota[J]. mSphere, 2023, 8(1): e56922.
|
[33] |
LOPETUSO L R, SCALDAFERRI F, PETITO V, et al. Commensal clostridia: leading players in the maintenance of gut homeostasis[J]. Gut pathogens, 2013, 5(1):23. doi: 10.1186/1757-4749-5-23
|
[34] |
COBO F, PÉREZ-CARRASCO V, TARRIÑO-LEÓN M, et al. Bacteremia due to Clostridium innocuum: Analysis of four cases and literature review[J]. Anaerobe, 2023, 83:102771. doi: 10.1016/j.anaerobe.2023.102771
|
[35] |
RYBNIKOVA E. Brain, antibiotics, and microbiota-how do they interplay?: an editorial for 'antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets' on page 219[J]. Journal of neurochemistry, 2018, 146(3): 208-210. doi: 10.1111/jnc.14341
|
[36] |
GODUR D A, DENTON A J, ESHRAGHI N, et al. Modulation of gut microbiome as a therapeutic modality for auditory disorders[J]. Audiology research, 2023, 13(5):741-752. doi: 10.3390/audiolres13050066
|