Citation: | LING Guoxu, HUANG Tonghong, XU Qingling, ZHAO Xuemei, ZHU Qiulin, ZHONG Yu, XIE Yubo. Effect of PPARγ agonist Pioglitazone on microglia mitochondrial oxidative stress in neuropathic pain rats[J]. Journal of Guangxi Medical University, 2024, 41(2): 233-240. DOI: 10.16190/j.cnki.45-1211/r.2024.02.010 |
[1] |
BOUHASSIRA D. Neuropathic pain:definition, assessment and epidemiology[J]. Revue neurologique, 2019,175(1/2):16-25.
|
[2] |
COHEN S P, VASE L, HOOTEN W M. Chronic pain:an update on burden, best practices, and new advances[J].Lancet, 2021, 397(10289):2082-2097.
|
[3] |
STEIN M D, KENNEY S R, ANDERSON B J, et al. Prescribed and non-prescribed gabapentin use among persons seeking inpatient opioid detoxification[J]. Journal of substance abuse treatment, 2020, 110:37-41.
|
[4] |
SCHWABENLAND M, BRÜCK W, PRILLER J, et al.Analyzing microglial phenotypes across neuropathologies:a practical guide[J]. Acta neuropathologica, 2021,142(6):923-936.
|
[5] |
BOND S T, MOODY S C, LIU Y Y, et al. The E3 ligase MARCH5 is a PPARγ target gene that regulates mitochondria and metabolism in adipocytes[J]. American journal of physiology Endocrinology and metabolism, 2019, 316(2):E293-E304.
|
[6] |
HA J, CHOI D W, KIM K J, et al. Pioglitazone use and reduced risk of dementia in patients with diabetes mellitus with a history of ischemic stroke[J]. Neurology, 2023,100(17):e1799-e1811.
|
[7] |
ZAMANIAN M Y, TAHERI N, OPULENCIA M J C,et al.Neuroprotective and anti-inflammatory effects of pioglitazone on traumatic brain injury[J]. Mediators of inflammation, 2022, 2022:9860855.
|
[8] |
SANTOS D F S, DONAHUE R R, LAIRD D E, et al. The PPARγ agonist pioglitazone produces a female-predominant inhibition of hyperalgesia associated with surgical incision, peripheral nerve injury, and painful diabetic neuropathy[J]. Neuropharmacology, 2022, 205:108907.
|
[9] |
ZHONG Y, CHEN J L, CHEN J, et al. Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury[J]. Journal of neurochemistry,2019, 151(2):166-184.
|
[10] |
LONG L N, ZHONG W W, GUO L W, et al. Effect of bufalin-PLGA microspheres in the alleviation of neuropathic pain via the CCI model[J]. Frontiers in pharmacology,2022, 13:910885.
|
[11] |
SAVAGE J C, PICARD K, GONZÁLEZ-IBÁÑEZ F,et al.A brief history of microglial ultrastructure:distinctive features, phenotypes, and functions discovered over the past60 Years by electron microscopy[J]. Frontiers in immunology, 2018, 9:803.
|
[12] |
ST-PIERRE M K, BORDELEAU M, TREMBLAY MÈ.Visualizing dark microglia[J]. Methods in molecular biology, 2019, 2034:97-110.
|
[13] |
KOHNO K, SHIRASAKA R, YOSHIHARA K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain[J]. Science, 2022, 376(6588):86-90.
|
[14] |
CHIRILA A M, RANKIN G, TSENG S Y, et al. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain[J]. Cell, 2022, 185(24):4541-4559.e23.
|
[15] |
ZHOU L J, PENG J Y, XU Y N, et al. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain[J]. Cell reports, 2019, 27(13):3844-3859.e6.
|
[16] |
RAHBAR A, SHAKYBA S, GHADERI M, et al. Ivermectin-functionalized multiwall carbon nanotube enhanced the locomotor activity and neuropathic pain by modulating M1/M2 macrophage and decrease oxidative stress in rat model of spinal cord injury[J]. Heliyon, 2021, 7(6):e07311.
|
[17] |
YAN B B, LIU Q, DING X B, et al. SIRT3-mediated CypD-K166 deacetylation alleviates neuropathic pain by improving mitochondrial dysfunction and inhibiting oxidative stress[J]. Oxidative medicine and cellular longevity,2022, 2022:4722647.
|
[18] |
ZHOU Y Q, MEI W, TIAN X B, et al. The therapeutic potential of Nrf2 inducers in chronic pain:evidence from preclinical studies[J]. Pharmacology&therapeutics,2021, 225:107846.
|
[19] |
ZHANG K L, LI S J, PU X Y, et al. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission[J]. Redox biology, 2022, 49:102216.
|
[20] |
CHANDRA V, HUANG P X, HAMURO Y, et al. Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA[J]. Nature, 2008, 456(7220):350-356.
|
[21] |
CHEN Q Y, HUANG X B, ZHAO Y J, et al. The peroxisome proliferator-activated receptor agonist rosiglitazone specifically represses tumour metastatic potential in chromatin inaccessibility-mediated FABP4-deficient gastric cancer[J]. Theranostics, 2022, 12(4):1904-1920.
|
[22] |
ZHANG Z W, ZHANG X W, MENG L, et al. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway[J]. Frontiers in pharmacology, 2021, 12:658362.
|
[23] |
LI L, FU J Q, LIU D, et al. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis:involvement of reduced PPARγ expression[J]. Redox biology, 2020, 30:101412.
|
[24] |
TANG Y, WEI K, LIU L, et al. Activation of PPARγ protects obese mice from acute lung injury by inhibiting endoplasmic reticulum stress and promoting mitochondrial biogenesis[J]. PPAR research, 2022, 2022:7888937.
|