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Research progress on lactylation in atherosclerosis
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Abstract Atherosclerosis (AS) serves as the primary pathological basis for cardiovascular and cerebrovascular
diseases. Lactylation, a novel post-translational modification (PTM) linked to lactate molecules, functions as a
critical interface between cellular metabolism and epigenetic regulation. This modification influences diverse
pathways to regulate essential biological processes and has been closely associated with disease progression.
Emerging evidence suggests that lactylation may participate in the pathogenesis of AS. This paper aims to summa-
rize the biological characteristics of lactylation, and then specifically emphasizes the mechanisms by which lacty-
lation participates in the development of AS through regulating endothelial cell function, macrophage polariza-

tion, and smooth muscle cell senescence.
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1 ZERI2 I

1.1 ARKE X

FLIR 1k (lactylation) +& #8 FLIR 77 11 i JL A0 B
58 A5 R s R vk R 5 A, M T R B B )
REAIEVE o LR 2 A1 A R AC I 1 ML B B 7= 1), 40 i
W FLIR IR B AR R AR A T M A . AN T
FLER LA 3 Fh S5 44 4 T8 A7 AE , B D-FLIR \L-FLER A
AP e DL-FLIR - 3 PP S A4 4 43 30l oA L- AL Bk 4L
(L-lactylation, Kl-la) « D- . Bt 1t (D-lactylation, Kd-
la) F1 N-g #2 £, 34K (ce-lactylation, Kce)™ . iX 3 Fhifi
AR N 2 0 8 2 TR P A 2 M JO AN 2 TR A B, A
T A BT 2 0T D RE ™ AR AN [F s . B g
Wk T A B B AU 4R R PR 5. H R
AN LR A T2 P AT 2« B AR SR A 3 1) L-
FLRR AL AN HE B S B A 5 (1) D-FLR AL . L-FLER 2
P PN IR 32 B S R AR T KL -la 2 T 0 7 Ao 1Y)
&M, H TR J7 I BB 2 Kd-laGE it
VO R FLER AT DR H TR 1) <l g ot A 7 A ) AN A R T Ao
RG2S B WS B, 5 oA AR A 3L
ﬁ?‘%[lmo
1.2 FLRRAH 1Bl

Filg i S 824 3 1 L- LR Ak /2 B T B FE B T
ZHIALIRRAER . 5H e RSB —F, L-A
TR K 11 R A MO T R o Bl 1) A . LR AR B A
ity “writer” 8 3 A0 P IR/AMIRPE L-FLIR 5 FLIE 4
A PR AL BN, R L IE 5 (A1 54 4% 22 20t A B R 4L R
)56 2 R e- 2 FE AL, ANTAT 51 R BB B ET A R A
VDR e A o FLRRAAE R0 2R [ “reader” 1@
R SR U R R IR B MRS, A 3 RS
5 I R I IR OIS I Ml R L AR ) BB
MG S RAERN, EILRNEG “eraser” £ R E
2 R AL A IR AL IR A 1, 4 1B R ik 2k AL
FRALIBAES . HRTHF 7 Sk 41 (A L B B Bl
E N F B “writer” , H AR LB AT IZ )22 E1A

4 4 % 1 p300 (E1A binding protein p300, P300)!",
Ak, A BE-tRNA A i (aminoacyl-tRNA synthe-
tase, AARS) 1/2", 7, I J& ¥ % i (histone acetyl-
transferase, Tip60)""\ YiaC (Jif A% FLER % 7 i )" 1 5
TR L 7 1 8(lysine acetyltransferase 8, KAT8)!"”
PeAHak R IE R R AR . | RHAEAM S
I i (histone deacetylase, HDAC) 1-3 Fll sirtuins &
A 1-3(SIRT1-3) Ay # 7Y f) 4 53 FLIE 5 25 BR 1 “eras-
ers”"o {EAFERENZ, H AT R KA IOE A
N “readers” , {H T i} 72 7 , 3 55 DAL - R0 [R] 4
(double homeobox, Dux)""F = It & /5 & 19 33 (tri-
partite motif-containing 33, TRIM33)"" 1] ¢ {F A 1&
i 25 Il K R AR L X R i U EAF IR R 1)
J7 1]

1.3 B s S AR5 DR

LB LR EEHEAMIEAEA . &
W LR A Ak A2 75 N 2H B ARG 2 IR Bk B B ik
B, RSB A AT 2019 FFAEZ OHEH BRI T
28 > Kla fi7 51, 3 %2 241 8 1 3 Chistone 3, H3) F14H
[ 4 Chistone 4, HO. H |, 418 H 3 55 18 AL it
& R F. BR b C(histone H3 lysine 18 lactylation,
H3K18la) A 5t i) 78 70 Y FLER K 2 11, H3K 18l JiH
W AR AERE A JE Bl A a1 DX, AN g
R R AE (M e b , 18 5 % P AR FERT 3 21 0 2 55 1A
R, WA FE R L s i 4 T4 R AT IR iG K B L B 4H
JL A A0 AR R AR R H3K8 A, HiAt B A i
T T e I 2H 2 R TR FLIR A A st DR IE B
H2BK6. H3K9. H3K14. H3K23. H3K56. H4K5.
H4K80 Ml H4K12 %5 . H i H AR 2 A7 12, 2
HEEAW SRR, SEWEVIMEX, B
BAENIGITHE RSB T -

IERIE R R, AR UANIR T HES &
ITRAETIEHEABARKE . FHEAA
T% A AT B 38 I 39 5 Bl A )X Se R 2H B R D RE S
S B 0T RS E T A L S5 R A AR BT
RE , 55 2 i A A B AR A 0GR R T B Y FL
TR AL AH 2 R AR A R A 2 H R R R 3 T AE
H R A LR AR AL S RS AR, AR A R
Tl v ke ik 22 1) 26 B 1 AL R A B A A7 A R I
A4 & FLEE 10 i Bt T AR DAL AR & 2 A H
f10) 2 ORI A R B 1) LR A AR R A 15 o o R HE VR T
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g BB KR RS R o 13 v AL Dy 2 7 AL
PR AN AE 50 Jok 586 A5 A6 A 5 B 400 R = F b iR 4 Y B0
1oy 1A

2 FABiL 5 AS

AS & — P K Z Fham B g P SO IS AR LA
LA P B2 0 B I T T LA B A 4 R L R 4
JiL AT A . PR A AR T R R RS R 4 i A
A LR 2 T 1 DA R ST LA it 2 28 5 46 2 Bk 5
AS KAR EWIAZ O . IEEN TR, AR 55
CHITHE % fiff 338 9 2R A4 Ty 5 B A5G ) 78 30 K R P 4k
) R e o AR B A Y. — T K 1 496
%2 53 (RN T AT FE A S AR, AL B K P 5 33
OB A A 52 TEAH OQ G 2R, J ST T oAt o L A5 JRU I
DRI 2229, 3R B B Bl 5 AR I FL IR v R ad i FLIRR Ak
5 AS i H I 72 .

2.1 ZH5NEAEY RS

P R A B ) e R RS A AS IR UG e R3S . I8
ANMNZR5 S 0 FLIRMERR R 1 AS /N R 254K CpG 45
£ & H 2 (methyl-CpG binding protein 2, Mecp2)
271 7 #i & R FL B 1k (Mecp2 k271la) , Mecp2
k2711a 33T 5 3 4 57 45 & i b R 5 B Cepi-
regulin, Ereg) IR I& , 520 22 24 J5 75 A0 &1 A B A5
5 IE I, AR T AR AT P R A M A A R R B - 1. 4H
JHON TR e R IR 21 Y <R A g S I NS i -
1B E 4R FR-6 WIRIE, IRBG N 1/ B = B ik
ZUh N Je — S ARG B 7K T 2 T ZE 2% AS (1) i
JER, Py R7 — (8] 78 i 7% {6 (endothelial-mesenchymal
transition, EndMT) #& AS [ < 88 K 2l [K 2 . Wang
SFPE LRI FEAMNARE FE R E A EA T, i
1 18 & [ (anti-silencing function 1A, ASF1A) &
itk P300 /5 T H3K18la, H3K 18la 7F Snail 5 i #%
5% $ 1] [A] -7 (snail family transcriptional repressor 1,
SNAILD J& 374k i) & SR SNALT e 5%, AT g 8t
EndMT #1 AS (Rt i . X P Fe R 0], 4182 11 9L
TR AR & AL R AL AE AS P9 B R A1 R R H%
ANEER AR AN [F] AR R AL 55 RT B R HE AN [R] (1)
DIRE , A KA 7 58 2 0t Fefa m LR AE AS N 3R
R s I AL .

2.2 R E R MARAL S 20 S

I 400 i 2 B R P 3 S S e A i, e M1/M2
WA BN 98 0 S S 20 AS BEFR o BE B A AU 7
AS E W20 i B2 . R R M M1 B R4 &
PIARE Em AE , BEAT A7 SN AR, S BRI ™ 2R, T
PR M2 I 20 Ak i S0P BB TR e M R M7 TR 44
HE IR A AR PP B S Y 141 BASE i 22 0 A 4R
oy Ao B T /N BB R 2 LR P MR AL O
22 5 7L B M N A0 H3K18la | . 2, b
H3K181a % 57 P 42 1 — 28 M2 RUFE B, 451 op 2 1
fitg 1 Carginase 1, ARG ZEM HIIT 46 2.2 Bl . %
Fo 45 R R W], RO RO W MR 4
H3K 18la 3K 5l LR A0 [7] 1 8 P2 M2 R AL AR, X AE
Bk FE AL R R G L. Bl S, — IR AT
Bt IUEH] T H3K18la 55 AS ELME4H s M2 % ALK
KEZ BT RN, AS H B 4 s MCT4 1) ik = AT
1 S S ER B 2R H3K 181a, Ff LA P300 45 45 1 75 5%
RO T 78 s DR PN = R TR A A0 6 R 1) o, I G L g
2 B 2 Y |y ML 1) M2 B A T 7R 53 Bl ok A
W, ge AN, Sy — TR F s T AR R A AR A AE
I 20 i M2 R A o 4 S i e e 2 B A
ST E T Mecp2 B TR 271 (K271 I 4F 53 14 5L
2 1k, (Mecp2 k2711a) , Mecp2 k2711a Fil H3K36me3
Z TB) FRAH ELAE 3 B0 1t m] K MBS 0 HT RUNX
KR ¥ 5% A ¥ 1 (RUNX family transcription factor
1, RUNX D H e 5 4], 58 728 SR M2 B
Wi 41 M A A TR 3 n 1/ BR B AR e M R LR
21 B R L R A A L e U (e R D) R AR B T
2T AR FLIRAGAE AS B R 40 i A 7T A A PR
RN FLIR A WAL BIF 78 6T T 3 ik o8 5 4 44 2 A2 1)
FHAA EEZ L
2.3 IREFIE IR

I P38 AL 4H #9 (vascular smooth muscle cell,
VSMOC) 3 22 i 13t 5 Jik 585 4 5 A A0 B He AN A8 5 20
Li SFPIEREE VSMC 15 8 v R B Jed IR BB IR 1 52 A
A ¢ & H 1 (TNF receptor associated protein 1,
TRAP1D) (& 2 8 A7 S0 2 At , S BRI ™ A48 T
BRI LR 1 N M 4H B g R R AL B8 HDAC3
e i3k 2H 25 1 Ha Mt 2 1R 12 LR 4K (histone H4 lysine
12 lactylation, H4K12la) . H4K12la & & 3 Z K5
W3 1 (senescence-associated secretory phenotype ,

SASP) JA Bl ¥, Wik SASP % 5% I il VSMC % 2 il
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(108 704 15

i iR A AN, FURR AL I 1E I 5 AR 2 I 45
APIEE T R AR F B FLIRR Ak T gl i 5
AW R AT TS5 AS BB AR, Rt
s B 2 (B 5T K I B FL R AL A 45 AS 1 B 2
B .

3 RESRE

AS 2o i I3 7 (A% 0o Bl , SR 2
FHMARTERN . SRR, ALRAIEN—
Flopr B R S BN 5 1 AU S RO AL R
RLEHAEF, 25 Z R B 5 R K& . 75 AS
H, LR DA FL IR 14 T AR 25 7L 1R A0 T A0t 1 7 =X, T
T AR & A LR K, AT RZ IR P R T
RE B3 5« 15 200 PR 2 SRE AR 14 DL P L4 3 2
HERTSE5ASHARE. RELRLIE AS HHI1E
FHIZEH AR 7 AR AT AELE W 2 3k - (DI R e
PE L RS 1) LR A I B A, HE B AR I
IRHIIR T s () 8L AL TR AS TR K R34
TR L TR A Tl 2 TR R o /N RO s (B R R LR AL
5 H Al B0 B S S (0 Z Bk 2 R4 RS BAE
F s (4 G 3 308 ) LR 4K 14 /> 23 7 400 1) 790 5 3 7
VAL HAEASHIRITIE 1. RRMATE G U
S0y RN 2 (R 2H 5 4R T B LR AN 1 IR 7 R S
VA 25, 9 AS RS HE VR 9T SR AT LK, 9 AS
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