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Fructose regulates M1 macrophage polarisation by promoting glycolysis

WANG Minghong', LIU Yubing’, WANG Xinhang*’, LI Han’, CHEN Sihong', ZHANG Minhua', PENG Yang',
LU Cailing', TANG Shen™, LI Xiyi'. (1. School of Public Health, Guangxi Medical University, Nanning 530021,
China; 2. School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; 3. Key Labo-
ratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region,
Guangxi Medical University, Nanning 530021, China)

Abstract Objective: To investigate the regulatory effect of fructose (Fru) on the polarization of M1 macro-
phages induced by lipopolysaccharide (LPS) and interferon gamma (IFN-y) and its possible mechanism. Meth-
ods: The experiment was divided into MO group (THP-1 cells were stimulated with 100 nmol/L phorbol esters for
24 h), M1 group (MO group was stimulated with 10 ng/mL LPS and 20 ng/mL IFN-y for 48 h), and M1+5 mmol/
L Fru group (5§ mmol/L Fru was added simultaneously with LPS and IFN-y for 48 h of stimulation). Reverse
transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression of po-
larization markers interleukin-1p (/L-1f), interleukin-6 (/L-6), tumor necrosis factor-a (7NF-«) and cyclooxygen-
ase-2 (COX-2) in M1 macrophages. The activities of glycolytic rate-limiting enzyme hexokinase (HK) and lactate
dehydrogenase (LDH) were detected using a microenzyme activity kit. The reactive oxygen species (ROS) kits
were used to detect intracellular ROS levels. The phagocytic ability of the cells was detected by neutral erythro-
phagocytosis assay. The mitochondrial respiratory chain metabolic enzyme activities were detected by Azulin
method. The adenosine triPhosphate (ATP) contents were detected by using an ATP test kit. Results: Compared
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with the MO group, mRNA expression of /L-1f, IL-6, TNF-o and COX-2 in the M1 group was increased, activi-
ties of HK and LDH were increased, mitochondrial respiratory chain metabolic enzyme activities and ATP con-
tents were decreased, intracellular ROS production was increased, and phagocytic ability was enhanced (all P<<
0.05). Compared with the M1 group, mRNA expression levels of IL-1f, IL-6, TNF-o and COX-2 in the M1+5
mmol/L Fru group were increased, activities of HK and LDH were increased, mitochondrial respiratory chain
metabolic enzyme activities and ATP contents were decreased, intracellular ROS production was increased, and
phagocytic ability was decreased (all P<<0.05). Conclusion: Fructose may promote the glycolysis of M1 macro-
phages, reduce the level of oxidative phosphorylation, upregulate the expression of polarization related markers
of M1 macrophages, promote the production of ROS, and downregulate the phagocytic ability of macrophages,

thereby regulating the polarization of M1 macrophages.
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