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Progress in targeting tumor—associated macrophages in cancer immunotherapy

ZHANG Siyu, ZHOU Qiong. (Department of Respiratory and Critical Care Medicine, Union Hospital Affiliated
to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China)

Abstract As the member of immune cells, macrophages are necessary to fight against pathogenic invasion and
activate T cell-mediated adaptive immune responses. In the tumor microenvironment (TME), macrophages play a
complex role in tumorigenesis and tumor progression. Tumor-associated macrophages (TAMs) can promote tu-
mor progression through supporting the growth of tumor cells and inhibiting the tumoricidal activity of lympho-
cytes. Therefore, TAMs become an important target for cancer immunotherapy. TAMs-targeted therapeutic strate-
gies comprise pro-tumor TAMs inhibition and anti-tumor TAMs activation. This article summarizes the feasible
strategies of targeting TAMs in cancer immunotherapy and highlights the synergistic effect of TAMs-targeted ther-
apy with other immunotherapies.
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CD47/STRPa 4t 1] Pk 52 155 W3k 200 Jfa %oF 8 240 i 1) 7 e
T B8 FF ST DU IR G 2 ] R AE 2 P i g A Y
H, CDA7 04 o] i) fifr e A= A A1 3k P 988 5o e ik o
U AT A ) 5 S CDS T 4 ™. — TR
L0 i 88 (9T 72 3 B, BELIBT CD47 A7 K 42 Ji 8 784
MW 4 P 2 A% SR e Bk 8009, e Ak, B T A R R

Jed it g A F B b, P CDAT ¥R YT 1B BT LS g
o A 751 A ) 38 i A7 e g 4 R

KR 7 CDAT FUAA X ¥ HE 7] Ji 83 40 B 1176 97 S g
Ab, A V2 EE R TAMs FI25%, 40 CDA40 i3l 77 | %
A& B WL B 3- %2 B v (phosphoinositide 3-kinase 7,
PI3Ky) #01iil) 551 A 1la 28 2H 25 1 25 £ B 4L B Chistone
deacetylase, HDAC) 1l 55 51", CD40 #& TNF %2
A SRR ) — %, A i 968 44t B R 60 955 15 W 4 R AE I 1)
PR 2B ERE, CD40 ¥ I0E J5 7T i S 91
JiR 52 3 4 R TRCARE 9% 4 DR 1, G S R 1
CD80 11 CD86 17335 , i i 24k 457 T 240 i i 142 1 5t bt
iR A U, A Ji IR A e 1) SIE GBI 2, CD40 ¥
TV G 9% 00 1) Y I 4 R D B 2 BT Y B R
A0 A, B R e AL Sy b, Bl ) — DA AT
B, 76 /N B 45 W e A 28 o CSF-1R #1471 5 CD40
WEN 7RG A FH AT 25 9% 0 ) 4 B2, B R
A B R R . A B S HRIE , CD40 BiEh 7
o 2 RUBE W YR T BT B FAE R RO UEAE R
B, CD40 s A B T+ 5 2 Al N B 9% #0125 7k
5230 G B WO IR A, FF 0T 1 9io0) A 25 s #0710 VE 9T
FOYSYTARN

PI3Ky 7E 045 B W 40 J 7E 9 (1) 88 R4 i oK &
FIEM . BOE W PI3Ky 15 5 AT LA #% K -1 kB (nu-
clear factor kappa-B, NF-xB) ]33 , 3k 1y 1 1F i Jeg
i J Ao A b S AR BRI, 1) PISKy W] BE
108 T T T 0 ok Pk A2 B 2 M AL I RELA e g g
JER, AE LR AT IR 5 5 e S S M A R T E
B, 100 ) B e ok PI3KCy T 3 o 7 4 A% 1 Ik 4 L A 10
i) Jf B 240 i e o A2 28 SR 2 ik b 98 o P 55 1) e 9%
FHDIR A o PI3Ky i 71 3 7 A7 983 /) BUASE 2 v B
7 H SR R IR E T B [EAE R 0 ) g A
KIFBEEAEY,

B, 06 I a 22 HADC A& 5 9 2 5 0 41 i &
FEHUMIRE AR FH I — Mo X 075" . HADC et 2B
HEAMIEHE A T SA B AR S,
T A 428 2 L 38 A% 2 A A = T TR Y
SEE Y e P 1T a2 HDAC #0177 TMP195 7] 75
5 IR O 85 AR IR 98 AN AR R M R A R Y 4 S AN
I3 A, A5 B A R R o B D 0 e R R R, AT 9k
/b i I8 A7 g AV 1 RS o AT I8 R, 7E /DN BRFL
i g B AL o, TMP195 Bk & A0 9T Bk 25 5 BHL T ¥R 97
AT 3 5 LR R AR Y 28 B RTIR L ¥ TAMs H
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G2 IR R R AL SRRk B BRI T, IF A
Je G BRI T SR T — iR 177 2
2.3 EWR4AIETT

ITAE i A DU 524 T 41 g (chimeric antigen re-
ceptor T cell, CAR-T) J7 A 1E ¥R T 1L 7 20 7% 14 i
e AR T A N BE E RS, SR LE S AR Hh 4
S PR o AE G i ORI 1) i S AR 11 S Joi 1 A e A
P T R A PR 52 44 R 48 i (chimeric an-
tigen receptor macrophages, CAR-M) A] D), 34 5 73 I
TG WA 98 i 20 i DXL - FRT B8 77, e iR 0 iR 42 2
25 T 4010, JWOIE T 40 %o Jie J8g 1) 4 2 s 2, A BE %
Tl SRR VR 9T R 1 . H AT IE AR 2R AT BOH R AT
I PR R 56, DLl CAR-M 7E AN 8] i 98+ 1 98 40 o
AWFFLRM A B8 ) N R B A KR 1 2 44 2
(human epidermal growth factor receptor 2, HER2) 1]
CAR-M 697 £ /) B [ Rg B2 o (7t (R 2 1) Jieb
A ROR  HoAE R M2 1 41 i % 46 D ML 4
JH0, R 1 5 T 20 0 0P RN . H CAR-M T %
A7AE — L PR 1) 75 AR ke, R 2 i ) 20 4 4 B
TCAR T T 40 1 25 I Ath 4 58 A0 i, & 7™ B PR ol VB 97
B Fah, ERRA M — B AEE B BOE , 2B IR
o ER R T A R Y. R CAR-M LS
W& H 7 20 5 75 i3 — B SR TF K .

3 BESRE

5 Wk 200 i ) = 284 0 Ty e A P 08 fOER B b A A
BOR S o 5 52 v yRg R S5 %) 4t AR A A
SESZA A A B4R . DAL, AN [H] R TR TAMEs 357
K R] B A U RIS O BT R 2 HOh R
TAMs 1) =2 E K 5 B3 WUE A BAE G,
TAMs T B IE S VR 97 B S . KEWHAT
KW, 49 TAMs 1) 48 55 78 Bk TAMs Al # % 1%
TAMSs 1] LA R0 2% fif IPh 988 TR 58 14D G 92 400 1) 441 1)
Jie 0 L GE K AE AR TR . B AT 2 T4 6 TAMS (1)
2 IETE W PRAREE A , B8 6% A 250 Hh 37 B  #00 i Bl
i f2 TAMs J K ¥EDUMIBEAEH o b 4h, $E17 TAMS
GBI 9T AR R F A R VA T T B R 7T A
1 2 BT RO HT S B BT . RBG, BE A
TAMs BB IRIT & — PR HT 5 0 hE )% 76 97 5K
W (B AFRARE AL

SR S AT5 A R B 1 1) A0 PR ol 75 B e o 2B
—, TAMSs 75 M8 OA 58 175 2 2 & F R E %
SiE A T ) 52 2 PR R 4 5 R G0 TAMEs (19 9F 7
BT o PR R, TN A R AT AR P R
50 [ 24 i B8 R A R AN [R] 2R A e 4
JfL (5] 14 A LA FH 2 52 44 10, AR e 37 24 B 1) B
1, T DA RS A P B 20 ) 7 BRI 2 1) s ) e S 4
I 25 5 AR SR AR AT TAMSs [ 57 Rt AN Th g . 58—,
TE FLIRARE 485 1 Jes ANHIT 51 B et 1O I R 17 RN I PR BF 9
o, Y 2 W 9T 45 R 8 TAMS 15 K06 7 5 505 0 41
LB 298/, CD4" T 40 i gk /> , CD8™ T 4t i 384 fn
DRI I, 75 8 7] TAMSs 4 9% 36 7 HH o e] ~F- i 15 106 441 i
T 240 6 SV A DA o5 i i R IR TS & — S R
5= RE RET AR RN, CSF-IRFE PR ITE R
KRG BA R AR H G R E R i g i
HAEAT I CCL2 MR T e B R BUBA . 7RI IR
TR N % R B ) TAMs 2659 5 S50 15 0 40 i it
5 FE DL R A5 2 5 S R R E B 5| R E k.
I e PR AIE 7 S 1Al 42 15 TAMs 24 47 (1 751 B A0 4 45
1), Bk AN PEAGIIE T 77 & DL SCE e R 1)
e A BB R A . S0, TAMS 5 BT 7%
HUAS BT 5 5 /I B R 455 28 20 J2 B 1 T % CSF-1R
PO 7V B SRAGFPE R 24 1 i 25— B2 R 167
1 E KRR, A W 7488 1 4 CSF-1R 41 77 i
2RI HLE . a0, RS =K T 15k
() e FE W0 () PIBK A 5 A B T Jid ot 1% 48 fifd 583 %
CSF-1R # I F5 (HEHTY . SR M0, 75 $E 7] TAMSs %o
BT BT 245 M ok DG A F VR 2L AN TS 2
TEB L. W5, 1R Im AR R PP & S
] 5 A e v T I R A AR . B R
FI TAMs # VA 97 7T e 7= A= B i 24 1, LA & B W 48
i S 3 ek /b st 5 4 i R 2R 0 A mT g 5 kR 1)
Y B B3 1, B ) TAMSs %836 97 5 Hofh e 24 1R )T
JiVEARSE G, AT R 2 0 e AR A R RE AR VR T
PR 2 M IR R R IR TR AU B MR A A .
Uk, Ji R AR 355 A T e A 2 A A P e A s 4
L )RR o e A I ) A R G B VR T . FR Utk
A5 —AN ) s H AT E Sk = 58 05 75 AN 5] iR
AR PR b A PR 7R 5 00 L ) S R A R
DRI I, 5 AR S [ i g 8 28 v O Je B 22 11 A, 4R
% TAMs b SRR 5 (12 W IR 97 AT AR £ .
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