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Abstract Bone remodeling is a complex process that includes two mutually coordinated phases of bone resorp-
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tion and bone formation, which plays an important role in preventing bone aging and increasing bone density. In

recent years, studies have shown that mitochondrial autophagy (mitophagy) plays an important regulatory role in

the process of bone resorption and bone formation. Mitochondrial autophagy is a special cellular clearance pro-

cess that maintains normal mitochondrial function and metabolism by removing damaged mitochondria. With the

in-depth understanding of the regulatory mechanisms of mitophagy, combined with the study of drug interven-

tions, it is expected that more effective treatments will be developed to improve the quality of life of patients with

orthopedic-related diseases such as osteoporosis. At the same time, it will also provide new perspectives and strat-

egies for the prevention and treatment of orthopedic-related diseases.
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