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Abstract     Nasopharyngeal carcinoma (NPC) is a malignant tumor arising from the nasopharyngeal epithe‐

lium. It consists of undifferentiated squamous cells in the nasopharynx. This type of epithelial cell neoplasm is 

globally distributed, with the highest prevalence observed in certain regions of the world. It has been known since 

ancient times. The incidence of NPC is steadily decreasing as data on the molecular factors involved in the patho‐

genesis of NPC accumulate. Glycoproteins are characterized by polymers of saccharides attached to the amino 

acid sequences of proteins during the process of glycosylation. They are present in all animal cells and are espe‐

cially abundant on the surface of tumor cells. Alterations in expression of cellular glycoproteins have recently at‐

tracted attention as a key component of neoplastic progression. Tumor-associated glycoproteins may serve as a 

hallmark of cancer cells and thus represent novel diagnostic and even therapeutic targets. Interest in the role of 

glycoproteins in cancer in general and specifically in NPC pathology has steadily increased over the past fifty 

years, reaching over thousands and two hundred publications in the last five years, respectively. Here,  data on a 

specific class of proteins, glycoproteins, involved in tumorigenesis of NPCs are summarized, with a focus on a 

few of the best-studied ones. Relevant studies performed mainly in the last five years were retrieved and collected 

through the PubMed system. 

Keywords    nasopharyngeal carcinoma; glycoprotein; pathogenesis

Chinese library classification: R739.63     Document code: A 　　Article number: 1005-930X（2024）09-1261-12

DOI:10.16190/j.cnki.45-1211/r.2024.09.005

[通信作者] Liudmila Matskova，E-mail：liudmila.matskova@ki.se
[收稿日期] 2024-08-09

Dr. Liudmila Matskova  is a leading researcher at the Institute of Molecular Biology and Biophysics 

of the Federal Research Center for Basic and Translational Medicine in Russia. Her research interests fo‐

cus on the molecular mechanisms underlying the pathologic transformation of human cells in various 

malignancies. In 2004, she completed her PhD at Karolinska Institutet in Sweden under the guidance of 

Prof. Ingemar Ernberg. Since then, Dr. Matskova has sustained a collaborative relationship with Prof. 

Ernberg, as well as with various research groups across Sweden, the German Research Center for Envi‐

ronmental Health, the German Centre for Infection Research in Germany, the Lunenfeld-Tanenbaum Re‐

search Institute at Mount Sinai Hospital, the Department of Biology in Canada, the Massachusetts Insti‐

tute of Technology in the USA, Baltic Federal University, and Kemerovo State University in Russia. 

Their joint research spans a diverse array of topics, from Epstein-Barr virus (EBV) biology to the human 

microbiome.

·· 1261



广西医科大学学报           2024  Sept. 41（9）

糖蛋白在鼻咽癌发病机制中的作用
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Liudmila Matskova博士是俄罗斯联邦基础和转化医学研究中心分子生物学和生物物理学研究所的首席研究员。主要研

究专注于揭示人类细胞恶变成肿瘤的分子机制。2004年博士毕业于瑞典卡罗林斯卡学院，其导师为 Ingemar Ernberg教授。

并多年来与瑞典的多个研究团队、德国环境健康研究中心、德国感染研究中心、西奈山医院的Lunenfeld Tanenbaum研究所、加

拿大生物系、美国麻省理工学院、波罗的海联邦大学以及俄罗斯克麦罗沃州立大学在EB病毒生物学和人类微生物组研究领域

保持着紧密的合作与交流。

摘要    鼻咽癌（NPC）是一种源自鼻咽上皮细胞的恶性肿瘤，主要由未分化的鳞状细胞构成。这种上皮细胞肿瘤在全球范围内

均有分布，尤其在一些地区发病率极高。NPC自古以来便为人类所认识，随着对NPC发病机制中分子因素的了解不断深入，

其发病率正逐渐下降。糖蛋白是一类在糖基化过程中附着于蛋白质氨基酸序列上的糖聚合物，存在于所有动物细胞中，尤其

是在肿瘤细胞表面更为丰富。近年来，细胞表面糖蛋白表达的变化作为肿瘤进展的关键因素，引起了广泛关注。肿瘤相关糖

蛋白可能作为癌细胞的标志，因此成为新的诊断和治疗靶点。在过去 50年中，人们对糖蛋白在癌症中的作用，特别是在NPC

病理学中的作用的兴趣持续增长，近 5年来在这两个领域中分别发表了数千篇和两百多篇相关论文。本文旨在总结参与NPC

肿瘤发生的一类特殊蛋白质—糖蛋白的相关数据，特别关注其中研究最为深入的几种。我们通过PubMed系统检索并收集了

主要在近    5年中进行的相关研究。
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1  Introduction

Nasopharyngeal carcinoma (NPC) is a disease with 

high incidence in East and Southeast Asia[1].

Many factors, both genetic and environmental, con‐

tribute to the occurrence of this disease. Epstein-Barr 

virus (EBV) is recognized as one of the major factors 

contributing to the oncogenic transformation of epi‐

thelial cells in the nasopharynx leading to NPC. EBV 

contributes to the oncogenesis mainly by inducing 

chronic inflammation in the nasopharyngeal environ‐

ment[2, 3]. Radiotherapy, combined with chemo‐

therapy is the most successful treatment modality 

against the primary NPC tumor[4]. Late detection and 

metastasis pose the greatest challenges in NPC treat‐

ment.

The development of an anti-tumor vaccine based on 

targeting strategies against EBV[5, 6]  or cancer cell 

markers[7] is currently a highly demanded task that 

requires detailed studies of tumor antigens of all 

types. Glycoproteins are characterized as inflamma-   

tion-related DNA damage and cancer stem cell mark‐

ers in NPC[8]. Glycoproteins are formed by the enzy‐

matic attachment of an assortment of carbohydrate 

structures, all derivable from glucose, to the backbone 

of a protein. Therefore, the increased consumption of 

sugar and highly processed foods that characterizes 

the modern Western diet should also be of concern in 

terms of NPC pathology[9]. Glycoproteins function as 

membrane receptors, transporters, hormones, and sig‐

naling molecules. Carbohydrates, mono- or polysac‐

charides/glycans,  could be attached to the protein 

backbone at the serine or threonine amino acids (O-
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glycosylation) or at the asparagine amino acid (N-

glycosylation) [10]. Glycosylation is a type of post-

translational modification. It is not an exaggeration to 

say that it is this post-translational modification that 

determines the tumorigenic potential of glycoproteins. 

For example, these proteins are involved in tumor cell 

dissemination, as many of the glycoproteins (both 

structural and secreted)  form the extracellular matrix 

(ECM)  or cleave ECM factors[10] and thus serve as 

diagnostic markers of metastasis[11-25]. The glyco‐

proteins are involved in the shaping of the NPC tumor 

microenvironment (TME)[26-28] and immune respon‐

siveness[26].

EBV infection largely contributes to the immunosup‐

pressive TME observed in NPC[29]. Investigation of 

the molecular mechanisms has revealed that glycopro‐

teins are involved in chronic unresolving inflamma‐

tory signaling through the PI3K/AKT, NF-κB[30, 31], 

MAPK[32], and Ras[33] pathways in NPC tumor 

cells. Alterations in the NF- κB signaling pathway 

play a central role in NPC development. Abnormally 

activated NF-κB signaling results in an increased pro‐

duction of glycosylated cytokines IL-6 and leukemia 

inhibitory factor (LIF) together with IL-8 cytokine. 

This facilitates the recruitment of immune cells to es‐

tablish a chronic and non-specific inflammation 

niche. Such inflammation is mainly characterized by 

the prevalence of macrophages and granulocytes 

rather than dendritic cells (DCs), resulting in a re‐

duced tumor antigen presentation environment and a 

decreased activation of T lymphocytes and NK cells

[34, 35], abundance of Treg cells, and activity of sup‐

pressive type II macrophages[36], allowing immune 

escape of EBV infected NPC cells[37]. Another cyto‐

kine, TNF- α, which is an O-glycosylated, membrane 

bound, and soluble extracellular protein, activates 

EBV lytic replication, contributes to EBV load, modu‐

lates the immune response[36] and drives cell inva‐

sion[24]. Recent findings suggesting that diabetes 

may increase the prevalence of EBV infection and 

worsen the prognosis of NPC confirm the complex re‐

lationship between viral infection, blood sugar levels, 

and NPC pathology[29, 38]. In addition, glycopro‐

teins, both viral and host, play a role in NPC cancer 

cell initiation[26, 39-47] and behavior[12, 13, 19, 27, 

48-54],  as well as determine therapy sensitivity and 

disease progression[6, 23, 55]. 

EBV viral glycoproteins gB/gL, gH, gp42, gp110, 

gp350/gp220 determine the efficiency of EBV entry 

into epithelial cells, and viral load subsequently deter‐

mines the degree of oncogenic transformation[56]. 

These glycoproteins and antibodies to them serve as 

unfavorable diagnostic markers in NPC, both locally, 

as indicators of the tumor mass and systemically, as 

indicators of hematogenic spread.

Glycosylation of macromolecules with linear or bran- 

ched oligosaccharides attached to the protein back‐

bone, and their modification by sulfate groups deter‐

mines the accessibility of glycoproteins to binding 

partners, oligomerization, turnover, conformation, and 

ultimately their function. Sugars as building blocks of 

carbohydrates are delivered via dietary supply. Conse‐

quently, the degree of glycosylation depends on diet 

and the proper functioning of glycosylating enzymes, 

altered expression of which has been reported in vary‐

ing cancers[57]. There is an increasing interest in the 

use of diet interventions during the treatment of many 

tumors, including NPC. Low-fat diets (LFDs) or very 

low carbohydrate diets (VLCDs) have the potential to 

reduce food intake and alter the level of tumorigenic 

hormones when compared to standard diets[38].

To date, more than a hundred glycosylated proteins 

are known, the altered expression of which indicates a 

poor prognosis in patients with NPC. The specificity 

of their expression for NPС pathology is emphasized 

by their association with the level of EBV viral load 

in NPC and association with other EBV-loaded tu‐

mors. Here, information on glycoproteins involved in 

the tumorigenesis of NPCs is summarized, with a fo‐

cus on the best-studied ones to date. In the following, 

information is summarized on a few of the best-

studied glycosylated proteins involved in tumorigen‐
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esis of NPC, the altered expression of which indicates 

a poor prognosis. 

2  Glycoproteins in NPCs

2.1    CD44 

CD44, as a cell-surface receptor, engages extracellu‐

lar matrix components such as hyaluronan/HA, colla‐

gen, growth factors, cytokines, and proteases through 

its ectodomain, and it serves as a platform for signal 

transduction by assembling, via its cytoplasmic do‐

main, protein complexes containing receptor kinases 

and membrane proteases. Having varying interacting 

partners, CD44 plays an important role in cell-cell in‐

teractions, cell adhesion, and migration, helping cells 

to sense and respond to changes in the tissue microen‐

vironment[58]. CD44 is N- and O-glycosylated. The 

extent of these modifications determines the access of 

proteases to CD44 and ultimately the extent of its de‐

tachment from the cell membrane. CD44 is over-ex‐

pressed in NPC cells. Moreover, CD44 expression is a 

hallmark of  NPC cancer stem cells (CSC),  and resis‐

tance to chemoradiotherapy[59].

A molecular mechanism associated with the accumu‐

lation of a specific splice form of CD44V in CSC and 

radiotherapy-resistant cells has been identified. The 

lncRNA HOTAIRM1 promotes acetylation and stabili‐

zation of demethylase FTO; it demethylates the CD44 

transcript at position m6A, rendering it unrecogniz‐

able to the splicing factor YTHDC1, leading to accu‐

mulation of the CD44V protein isoform[60]. The tran‐

scription factor Bmi-1[59] and miR-150[61] have 

been shown to be involved in the control of CD44 ex‐

pression. In particular, polymorphisms of the 3’UTR 

region of CD44 mRNA reduce their binding effi‐

ciency which contributes to stabilization of CD44 lev‐

els in NPC[61]. This focus on regulating the expres‐

sion of СD44 emphasizes its importance in NPC pa‐

thology. The significance of CD44 glycoprotein ex‐

pression in NPC pathology is also emphasized by the 

positive association between EBV and CD44 genes

[8]. High EBV load is positively correlated with high 

CD44 expression[62]. Another proteoglycan, sergly‐

cin, has been shown to bind and upregulate CD44 ex‐

pression in an autocrine mode in NPC cells by recip‐

rocally activating the MAPK/β -catenin axis[63]. 

CD44 has also been reported to activate Ras signaling 

in NPC cells and to be controlled by redox regulation

[64]. Increased expression of CD44 in NPC cells ex‐

plains epithelial-mesenchymal transition (EMT) of 

epithelial cells and metastasis[64, 65]. CD44 cooper‐

ates with another glycoprotein CD24 to reprogram 

NPC cells to CSC[66]. Even CD44+ lymphocytes in 

NPC patients treated with radiochemotherapy indicate 

an unfavorable clinical outcome[67]. A CD44-targe- 

ted therapy has been suggested, either using siCD44 

adenovirus[68] or shRNA against Bmi-1[69].

2.2    E-cadherin and β-catenin

E-cadherin is a cell surface protein, and facilitates in‐

tercellular connection via homophilic interactions. β

-catenin is an intracellular protein with multiple func‐

tions, and it acts as transcriptional factor if detached 

from the complex with E-cadherin and not targeted 

for degradation. The E-cadherin/β-catenin complex re‐

sides on the plasma membrane, forming an adherence 

junction complex, one of three structures involved in 

intercellular connections. Without a stimulatory signal 

(one of which is the Wnt factor), β -catenin is perma‐

nently phosphorylated by GSK3b kinase and directed 

for proteasomal degradation. Appropriate environmen‐

tal signals induce alternative phosphorylation of β

-catenin, which then moves to the nucleus to serve as 

a transcription factor[70]. Thus, the E-cadherin/β

-catenin complex plays an important role in maintain‐

ing epithelial integrity, and disruption of this complex 

affects not only the cell adhesive capacity but also the 

Wnt-signaling pathway, abnormally activated in many 

tumors. Aberrant expression of this complex is associ‐

ated with a wide range of human malignancies and 

diseases[71]. 

Expression of E-cadherin is decreased and β -catenin 

is increased in NPC. Altered expression of these two 
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proteins has been well studied in NPC cells and is as‐

sociated with late-stage disease and metastasis to 

lymph nodes. E-cadherin expression is decreased in 

NPC cells, which is associated with the invasive and 

metastatic potential of NPC cells[38]. E-cadherin is 

modified by the N- and O-glycosylations. N-glycosyl- 

ation at Asn-637 is essential for expression, folding, 

and trafficking of E-cadherin. Βeta-catenin is O-

glycosylated at Ser-23,  which decreases its nuclear lo‐

calization and transcriptional activity but increases its 

localization to the plasma membrane and its interac‐

tion with E-cadherin[72]. Beta-catenin is reported to 

be upregulated in NPC cells due to mutations dis‐

abling its proper degradation[73]. The EBV-encoded 

microRNA miR-BART9 facilitates switching from  E-

cadherin to oncogenic N-cadherin[74]. E-cadherin ex‐

pression is controlled at several levels. At the level of 

gene expression, it is silenced due to methylation of 

the E-cadherin promoter induced by IL-8 signaling

[75]. MicroRNA 23b targets E-cadherin mRNA for 

degradation[76]. LncRNA HOTAIR regulates the ex‐

pression of E-cadherin by recruiting histone methyl‐

ase EZH2 to mediate H3K27 trimethylation, resulting 

in silencing of the E-cadherin promoter. O-glycosy- 

lation of EZH2 increases the stability of EZH2, en‐

hancing its function[77]. EZH2 forms a co-repressor 

complex with HDAC1/HDAC2 and Snail to inhibit E-

cadherin expression. Snail is also a glycoprotein, its 

O-GlcNAcylation stabilizes the protein and thus re‐

sults in decreased expression of E-cadherin[77]. The 

lncRNA transcribed from the metastasis-specific 

super-enhancer region of the genome  LOC100506178

(seRNA LOC100506178) existing only in metastatic 

NPC cells and powerfully aggravating NPC metasta‐

sis is capable of down-regulating E-cadherin expres‐

sion[78]. The oncogenic variant of the transcription 

factor KLF6-SV1  is associated with the lack of E-

cadherin expression[79].

Downregulation of E-cadherin in NPCs may be 

caused by activation of another glycosylated protein, 

the cell surface receptor NgR3[80]. Stimulation of 

NPC cells with epidermal growth factor (EGF) acti‐

vates PI3K/AKT signaling resulting in the downregu‐

lated membranous E-cadherin and β -catenin expres‐

sion[81]. The increased expression level of the cyto‐

skeletal proteins CKAP4  and Ezrin in NPC results in 

decreased membrane expression of E-cadherin in 

NPC cells. Demethylation of the E-cadherin gene in 

NPC could serve as a potential therapeutic strat‐

egy[82].

2.3    Osteopontin

Osteopontin (OPN) is up-regulated in NPC. Osteopon‐

tin is an extracellular O-glycosylated protein, the el‐

evated expression of which in NPC cells promotes 

cell proliferation and migration, predicts bone metas‐

tasis, and reduces the survival of NPC patients[82]. 

Osteopontin is upregulated in NPC. Expression of os‐

teopontin is controlled by a polymorphism of its gene

[83] and the hypoxic condition in the NPC tumor[84]. 

The plasma osteopontin level defines the response to 

radiotherapy in nasopharyngeal cancer[85]. Osteopon‐

tin promotes EZH2 expression and facilitates repres‐

sion of E-cadherin expression via methylation of its 

promoter[86]. Coordinated CD44-osteopontin signal‐

ing during disease progression in NPC has also been 

reported[87]. A recent review describes many aspects 

of the effects of deregulated osteopontin expression 

on tumorigenesis. OPN plays a role in cancer progres‐

sion and OPN-mediated tumor-stromal interaction, 

EMT, CSC amplification, immunomodulation, metas‐

tasis, chemoresistance, and metabolic reprogram‐

ming[88].

2.4    Lactoferrin

Lactoferrin/lactotransferrin is down-regulated in 

NPC. Lactoferrin/lactotransferrin is a major iron-

binding, secreted multifunctional protein, both O-and 

N-glycosylated[89]. Lactotransferrin is down-regulat- 

ed in NPC[90]. MiR-214 targets lactotransferrin 

mRNA[91]. Lactotransferrin acts as a tumor suppres‐

sor in NPC by repressing AKT through multiple 

mechanisms[89]. Lactoferrin deficiency induces a pro-

metastatic tumor microenvironment by recruiting im‐
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mune suppressor cells[26]. Lactotransferrin can be a 

novel independent molecular prognosticator of NPC

[92]. Lactoferrin can inhibit EBV infection of epithe‐

lial cells[93]. Lactoferrin suppresses the EBV-induced 

inflammatory response by interfering with pattern rec‐

ognition of TLR2 and TLR9[93]. Bactericidal/

Permeability-Increasing (BPI) protein family mem‐

bers BPIFA1/SPLUNC1 and BPIFB1/LPLUNC1 are 

two other secreted glycoproteins like lactoferrin 

which establish the innate immune protection barrier 

and are also significantly down-regulated in NPC. 

The BPI proteins have bactericidal function and pos‐

sess the capacity for endotoxin neutralization. In addi‐

tion, BPIFA1 is involved in cancer stem cell homeo‐

stasis in EBV-infected NPC cells[94].

2.5    Fibronectin 1 

Fibronectin 1 is highly expressed in NPC  and serves 

as a prognostic marker of NPC progression and dis‐

semination of cancer cells[8].  Either one or both of 

the amino acids Thr-2155 and Thr-2156 of fibronectin 

1 is/are N-glycosylated. It is secreted and is an essen‐

tial component of the extracellular matrix in NPC, 

which promotes motility and proliferation of NPC 

cells and suppresses apoptosis of cancer cells[16, 95].

2.6    Serglycin

Serglycin is a small, O-glycosylated extracellular gly‐

coprotein associated with vesicles, the expression of 

which is elevated in NPC[8]. Serglycin binds  CD44 

activating the MAPK- β -catenin signaling axis[96] 

and promoting self-renewal of CSCs and metastasis in 

NPC, representing an independent marker of distant 

metastases in NPC[63, 69].

2.7    Other glycoproteins

The role of glycoproteins in NPC is also indicated by 

the altered expression of several proteins of the same 

class. For example, secreted glycoproteins of the Wnt 

family, which are N-glycosylated and serve as activa‐

tors of the Wnt signaling pathway, can lead to tumor 

cell proliferation when their expression is unregulated 

in NPC[97]. Metalloproteinases of the ADAM family, 

which are N-glycosylated, transform TME facilitating 

dissemination and metastasis of tumor cells. These 

glycoproteins with metalloprotease activity are in‐

volved in the cleavage of cell surface receptors and/or 

degradation of extracellular factors such as collagen

[12, 13, 31].

CD38, a cell surface protein, undergoes N-glycosyla- 

ted. CD38 may serve a carcinogenic role in NPC by 

regulating metabolic‑associated signaling pathways. 

CD38 inhibits cell senescence and promotes metasta‐

sis and proliferation of NPC cells. It also regulates 

metabolic-associated signaling pathways controlled 

by tumor protein p53, hypoxia-inducible factor-1α, 

and sirtuin 1[98].

Podoplanin, a cell surface protein, is O-glycosyl- 

ated. Knocking down PDPN leads to suppression of 

NPC cell proliferation, migration, and invasion. 

PDPN may serve as a potential chemotherapeutic tar‐

get for NPC treatment in the future[99].

3   Conclusion

In conclusion, most of the glycoproteins involved in 

NPC pathology function around the plasma mem‐

brane either as cell surface receptors or as extracellu‐

lar, secreted proteins and mainly as oncogenic factors 

(figure 1). The significance of the glycoproteins dis‐

cussed above, namely in EBV-associated NPC pathol‐

ogy is underscored by an intimate link of these cellu‐

lar factors with other EBV-associated tumors like B 

cell lymphomas or gastric carcinoma[8, 100-102]. 

The role of metabolic reprogramming in tumorigen‐

esis towards glycolysis is currently of increasing inter‐

est in the scientific community[103]. Taken together, 

these data underline the important structural and func‐

tional role of glycoproteins in the development of 

NPC. As discussed above, glycoproteins often act in 

an autocrine mode (e.g., in the CD44-serglycine pair, 

osteopontin promotes E-cadherin silencing and coop‐

erates with CD44 signaling), supporting a vicious 

cycle of cell transformation. The observed changes in 

the expression of tumor-associated glycoproteins re‐
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flect the metabolic changes normally occurring in 

NPC cells, which increase interest in dietary interven‐

tions as a promising treatment for NPC[38]. Identifi‐

cation of novel glycoproteins associated with NPCs, 

and understanding the variations, mechanisms, and 

consequences of glycosylation processes in NPCs will 

provide important insights into the tumorigenesis of 

NPCs.

Most of the glycoproteins involved in NPC pathology function around the plasma membrane either as cell surface receptors or 

as extracellular, secreted proteins and mainly as oncogenic factors. Having varying interacting partners, CD44 plays an important 

role in cell-cell interactions, cell adhesion and migration, helping cells to sense and respond to changes in the tissue microenviron‐

ment. Increased expression of serglycin in NPC establishes a vicious autocrine cycle of cell transformation. The extent of glycosyl‐

ation determines the access of proteases to CD44 and ultimately the extent of its detachment from the cell membrane. Moreover, 

CD44 expression is a hallmark of  NPC cancer stem cells (CSC),  and defines resistance to chemoradiotherapy. The E-cadherin/β

-catenin complex plays an important role in maintaining the integrity of the epithelium, and disruption of this complex, caused in par‐

ticular by impaired expression of one or another of these proteins, affects the adhesive ability of cells and associates with metastasis 

to lymph nodes. Osteopontin facilitates repression of E-cadherin expression. Coordinated CD44-osteopontin signaling during disease 

progression in NPC has also been reported. Osteopontin plays a role in cancer progression, EMT, CSC amplification, immunomodu‐

lation, metastasis, chemoresistance, and metabolic reprogramming. Fibronectin 1 serves as a prognostic marker of NPC progression 

and dissemination of cancer cells.  It is an essential component of the extracellular matrix in NPC, promoting motility and prolifera‐

tion of NPC cells and suppresses apoptosis of cancer cells. Lactotransferrin acts as a tumor suppressor in NPC by repressing AKT 

through multiple mechanisms. Lactoferrin can inhibit EBV infection of epithelial cells. The red arrow signifies an increase, while the 

blue arrow indicates a decrease in expression.

Figure1. Altered glycoprotein expression in NPC pathology and impact on cell signaling
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