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Progress in epigenetic modification of ferroptosis involved in chronic obstructive pulmonary
disease
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2. Guilin People’s Hospital Affiliated to Guilin Medical University, Guilin 541002, China)

Abstract Ferroptosis is a special type of programmed cell death, which is different from autophagy, apoptosis
and other modes of death, and characterized by mitochondrial shrinkage, membrane density increase and ridge re-
duction. The mechanism of ferroptosis is mainly related to the dysregulation of intracellular iron metabolism sys-
tem, lipid peroxidation, and reduction of glutathione. Chronic obstructive pulmonary disease (COPD) has devel-
oped into a serious chronic respiratory disease threatening human health. Chronic inflammation, oxidative stress,
and protease/antiprotease imbalance caused by inhalation of tobacco or other atmospheric particles contribute to
the development of COPD. Epigenetic modifications affect the heritable expression of genes through histone or
nucleic acid sequence modification, and regulate the expression of genes in the ferroptosis-related pathway to am-
plify or inhibit the role of ferroptosis in COPD. These modifications provide potential therapeutic targets for the
disease progression. In this paper, the mechanism of ferroptosis, the relationship between ferroptosis and COPD,
and epigenetic modifications regulating ferroptosis and participating in the pathogenesis of COPD are discussed
in order to provide reference for the treatment of COPD.
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BRIE T Dixon SEWFE 2012 SR 1 A — BRI
HE A B PR AE T R B L I S R R
G A D8 H KA 35 IR o I S5 Ak P AR 2R A 28 Bk
FET AR ARFAE , A S84k B I T AR 5515
SHEEEE S 5H AT e R BT C Ok
S2 5 R BRI PR EVE SR L R G BEE E
RBFELZRPIRM K AR 4R FE R 2H SCHk
fff 7t (epigenome-wide association studies, EWAS) &
B, COPD & [ H 24k /K P 4F COPD i 4 , H.
[ Iy 545 COPD At 5 b2 g 188 1) Y B A 7K P
It AR T R B, BRAE T ] & AL 12 1
2 5 COPD K » N Ja 84 R MB AL B IR HE sV IT
COPD I3 fE % .
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AN , I 2R AR 2 /)N | Ui 25 5 A AR AN 28
REAR B R E TR UL . AR BIR 2EUR A
A R I e S A 2 b B 4i e 9 123 5 COPD
)R 2 S AE R
L1 BRACH

WEPRSE T FERNE R (Fe) &1 =
8 W R0 2 o i 240 R SN T 5 5 200 % A R 28 A T 42k
(FeH BRI BN R 7 (NI 2L 5 VBl A SO 45 &
ARERIEARAETEN . AN P 52 E Q%
R Ak, 2 B B B A& (transferrin re-
ceptor, TFR) #4152 2 i N J5 1 N I A, 7E AT 21 iR 6
RS _E R Pt 3 (six-transmembrane epithelial an-
tigen of prostate 3, STEAP3) FI{EH '~ , Fe” # 18 Ji7 ik
Fe*" Jf 1 — i 4 J& % iz 25 1 1 (divalent metal trans-
porter 1, DMT1) # N\ A2 % 2k itk (abile iron pools,
LIP)f# 47, SRR E E PR 2 R Fer JR H g ob , 4
ARSI . 2RISR E AT
TV XA A7 AE JH U RO 0 5 55 AH 2 e, LA N A7
78 2 PR R 5 2, e T a2k B i s
A A7 K 2h A P HLAR A BRAR P . BRAE NI
IH SR HE B S 08 VR AR AR R B R AR Y
AR NS IR, B S 72 52550 N
A pod A E (HOD M s s e B | i Y, JF

i F 22 AN T F0 TS D7 B2 (polyunsatu-rated fatty ac-
ids, PUFAs) & 2B IR B i S840 S B, 7 A KB TR 4R
(ROSO BN EAL T, A ML 203K 2 42 O™ W HL0,
A E R Fe™ it — Dl SRR T IR A&
1.2 R A kit S R S
JIE B A /2 ROS S A VI A= Rl 4 F2 5 T 0
I% (4-hydroxynonenal, 4-HNE) . [ — ¥ (malondial-
dehyde, MDA %5 Jlig it it 8 A6, 1 2 P 45 7 Dy g
O AR SZ A, T ER A AT T )i AR i A
o BIAE R AT R AT AR A T A% O M o T
AR — W2 IR R In) e 3 R R LA P o B B2 1Y) Bk 20
TR 2 4t , a8 i i ik e P 74 S R AN B 2R (1) 38
fn s e, AL B e H ik S AL V) 8 (glutathione
peroxidase 4, GPX4) 4 ZL 4l Bh X 7 43 bt H Ik (gluta-
thione, GSH) , GPX4 5 I Sl A6 40 fiff 25 9 A N 1) 1 LA
R A F P AL D) RE % e 1S A 3 P T
GPX4 J5 % ROS IRE /1 N B, B HLAA A Rid &
(1) ROS A Fe* B J5 A7 1 8 3 TR P47 , 3 Nk o8
TORURYE o WL A R AR AU R T I = AR — R 5
ROS %, X L85 H AL ER T 5 PUFAs ZE IR B L 45
I LLAN B AT PR AR H S, R e S 2R
(1) PUFAs J 8774 Jlig ot ot 8 A0 & 1 i o i A AL &
£ 5 Fe* \Fe 5l Ja vl A= g ol 4k B B &, 5
RN o I A R B R, 1 — P TR R T 1A
M. VF 2R S i i 2 E 2EH
T %5 4 B A A ¥ (acyl- CoA synthetase long- chain
family member 4, ACSL4) ¥ ¥ i€ [f] PUFAs (U {E 4=
VORI B b IR IER ) FTAH N2 Sl i A SRS, 7V 1ML
1% I8 % %% #%2 ¥ 3 (lysophosphatidylcholine acyltrans-
ferase 3, LPCAT3) ] N A= BB I » 25 15 440 i 1k
AL T 2K ] A S 0 R K TR B I e i 4 AR
Y. LOXs /& —FhlE L 21 35 & 200 g, H ATiA
9 LOXs MBS i Ik S BG4 & 8 E 1R a2 A
&Y, ERBE B B (PES) RIS R ZR AT K
AT H LOXs R 58675 26 AT N ERBE T AH G, Xk A
T2 1 COPD K i AR B CHEAE A . At 5
P450 %8 4k i J5 i (cytochrome P450 oxidoreductase,
PORO {2 12 H - I 340 57 70 A T fric e P 8> A% T
R H% 31 4 i €. 38 P450, 383 HLO, AR AN A 1k
S S AR 2 i B S A S B, B POR ) 2 AFAE T
Z M AR, FERAE T B A Rl — P A,
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2.1 #HWS COPD

N 82 B SR E A 4G EaEE YA A
T2, U A o Bk T AR i 08 AR O kA~
B Ui 5 K 2 0 25 i e 92 5| 7 4R A S ORI I ot 4R
o A BT ARE Bk B B A B RN ATORE TR
R Bk, HOH T 4% 32 AR 0% R 1 4 (nuclear recep-
tor coactive 4, NCOA4) &A= I¥)/8k W 18 N &5 2k &
&, FEUN AL T . NCOA4 & —Fhik £
MLk, 58 A 456 J5 161k R in ik, 1E
BRI FERE 0T B R 24T B P KT B
72 & E3 i ¥ ¥ 2 (E3 ubiquitin protein ligase 2,
HERC2) 5 NCOA4 #H H.AF FI - #uE H D fg , 7 4
FFNCOA4— kA E AV Thaefa € , 45 & H g

A5 Bk E BT # . R Bk B W i
1A NCOA4 21K n 93/ 8k 8 1 B A 5 400 i) 2 28
T2, 1 NCOA4 [1) i ik 2 s 2k & 7 #3 2 IF (2 4k
TR A X R 1 E RN T AR A R R AR
PR AT R R /E ™. Yoshida &4 {4 4
S UG 2% B 7E A $2 B (cigarette smoke extract,
CSE) £ 5 1 18] /)~ B i 20 21 7 NCOA4 RiE &
CSE 4/ B R I 9 B i 7K P 19 I Joid a4 A, it s
R A B /N B B 45 25 COPD & 58 B &, 1 i
SiRNA T-Ht NCOA4 3L J5 B E FRAK T HRIE T AR AL,
LR 20 B S 52 3k B g o ek S Ak )RR T I R -
COPD B fili L 1 A NCOA4 & & T FEA, B
51 G R (FEVD A BT T, IR A2
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55 5 A0 T 28 97 B0 < E D Rk i {2 32 COPD &
. SHERC2H R, BEEHEHEE1IHEBATE
NCOA4 [1) C Ui 25 ¥ 38 45 &, TEAK B - s FE I A7 1
W12 NCOA4 M #i 2k t H H " . NCOA4 & A]
TR B ) 2R AT A Y M2 B AL, M2 Y S
Y 2 5 i i B 1) AR, 42 4 MMP9 Fl MMP12 7K
ST A1 8ORE 2 i 5R AR I 0 B RS I RE I B
TR I v 4 B o 25 Jo R 2 1 il 2 1 B R 1
I 23 BN T 308 R NP B A, S B A R A
2.2 ZFERMBMRICT A S EEK 5 COPD

12 & — 5 H & & 4t (ubiquitinproteasome sys-
tem, UPS) i i & 44 [A] 2k F Wi A0k 1) £ 1 % At 1) g
S A M N 2K PRI R R IA . UPSHHIZ R VIZ &
TEALEE (ED) 45 &0 (B2) CERERF (E3) iR A BF A LL
S BRI B, V2 2 FRIC A BN B B JE AR
Il A R P il . B3 72 323%EH: 1 TRIMA46 5 GPX4
FHEAEH (3 GPX4 iz AL AN % & F1 B fif 5 2
BRIE T, [RAE B A F AE SR S B 6 & 4 v s ml 44
PR s RS I 3K B AR R % R T B2 A DR R 1
2 (nuclear factor erythroid 2-related factor 2, NRF2)
FR) A S 5 AT 9 o) T Ui BE R GPX4 5] K Bk AE
T A 2 A 0] DL 272 25 (DUBS) Bt
T, R A0 KT BRCAL AHC 8 1 1 (BRCA1-as-
sociated protein 1, BAP1) /& —Fl H2A 272 K AL ,
K SLCTALL 3 3+ b 1 H2A iZ R AL /KSE LAl
SLCTA11 ZRIE , 52 M i 22 IR 5 U 3 75 B 120
R BR K Bz 2B K R ¥ 8 (milk fat globule epidermal
growth factor 8, MFG-E8)Z 5 2 Fi 4= B 14 , 14k
B2 PORE R HE I A B B RS AT AR,
MFG-ES 1] L i 3t GPX4 Fl SLCT11A ik , 4% i
Jo ot AR B I PR AR A B 2 120 2 e e R
1 I#§ 14 (ubiquitin- specific protease 14, USP14) /&
MFG-E8 (] £z & ALEE, 7] fa € IF 1 MFG-E8 &
ik, B 5 H U E A TEE AR SRS B . b
i USP14/MFG-E8 fili 7£ 3 58 Ht S8 A A H 5] i 3 4%
Jig i i 481k ) MDA AT ROS ) 7 222, A iy 947 i)
CSE 15 M IE T, fEHEPL CSE 5 5 3 AU L4
ME T E R REEEEH. ZaBimns
COPD HI R iz AH 9%, 388 I 45 2k S0 T2 18 B AH 5%
FE[H F A 52 COPD #E#2 , MFG-ES8 1F ~ i ¥ 2k 7t
T B R 1, A B KA COPD YR Y7 $E A5, {H B |

A A BRI 7TE B MEG-ES U %% COPD 97 B 2
A 1 a3 S
2.3 HEAEIm RTINS 5 COPD KA.
o

A I & B B SR LB A (2 1 2 — , JLIR
V)45 DNA \RNA AR [ )5, 57 78 I 04 A0 0
HE 2 HARY R b, 25 B0 A0 1) g 55
2 53X — SR, R A ) %k L RNA
0 AR 3 AR DL K s e 2 1 B 1 R AR S R TR
B EANLRIE S 5, B AR AS A 5w AH 5 1
DRl - 3R FFad ik JRE B % Dh R S5 4% 1 Ui B 1)
% , 25 3 COPD. il S5 PN R G i K
2.3.1 mo6A BIAEEILT- 25 COPD K4 m6A
B 2 B LI RNA HRA A, BEAE F R B
I (methyltransferases, MTs) A METTL3.METTL14
Z W, 1 JLHE METTL16 T 4643 2] 967 . moA (&1
& R P B AS I AB U , I 1R 4 S A SO S T
BRI AR S 5 CSE W SHAET- KA, HEm
SN COPD i i3E JE Y, Xia 5 PVR I, S0 b %
Y1 ffg B 7% T CS " A " METTL3 %%, CSE 5 %
METTL3 it % ik /v 5 m6A &1 {2 3 microRNA-93
Jil FAHE 1) BURF S B TR 1 2 (dual-specificityphos-
phatase2, DUSP2) # % JNK i ¥ , £t fff MMP9 Al
MMP12 7K - Fh- 15 F1 a4 6 1 B i, T DR i 0 B 25
Py i 5 il e e A o [ BATE S5 452 %o MR 0K £ S N
PRFIIL A COPD £ 3 fifi 2l 23 circRNA-seq 73 BT & 2L,
circSAV 1 7E W 14 A1 COPD H % I ids v & B
H 5 COPD GOLD 7 #i#f g 22 IEAH 8 K &, mifik
circSAV1 Ji CSE i 5 (1) LIP #1 2D , BB TR
Z B JHI P, Bk I N G A 45 A B 1 2 (iron respon-
sive element binding protein 2, IREB2) & — ff RNA
SEAEA, BT ARSI mRNA IR AR 2
SR A 5 40 i HR 8k KT IREB2 7E Jifi o 7K P 452 s i
fE 3 LIP A B TR AR S 15 R S AL BLORT 2 5E
NP, CS B2 R IR/ U AL 2L moA &1 K ~F Tt
i, 157 m6A 1B 1M J5 1Y circSAV1 1] 5 42 YTHDF1
& 1% circSAVI/YTHDF1/IREB2 = 7G5 & ¥ 1 i
IREB2 mRNA ¥ %% , IREB2 £ 289 i 5 fili L iz 4m
FfL AR R AT SO I M A= TRV =T b R 2
R AERFET T BSE H, s COPD (19597 1t
Jg P, SLEG R B, COPD /) B A H circSAV] ik
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BEARHPH T 4-HNE R 8 , BB circSAV 1 J5 /> CSE
75 1R P 6 L 7 40 A X R v 4 g
S i A/ J5 5 0 55 ST v S SRR B B A i v 4
SHERFET BB , I8 2% COPD YR 1 i3k & , IfL i
circSAV1 A B A A COPD (¥l IR £ ¥ bk &4 31
RNA Z [ FoRHGET IR HEIR K EBAKRR
7 IS AT 5 K B S0 25 SR AR I
2.3.2 DNA FEALEMmEIE T 2K 2 5 COPD &
A DNA F AL R ATE CpG i, & 7% CpG & (1)
re A IE R S d I R R A . AT A A, N2/
GPX4 2 BRI T- 4 ML HT A A B8, Vucic 54
B[R 43 #r &3, COPD /NS 3 H CSE %k 2% 31 ff DNA
L Ah 220K T B, 200 Nrf2 040 30 B8 1) B R 6k o
Nrf2 J3 27 o (R € CpG A7 s & 2 8 F 6 AL P
Nrf2 ik , 1 ] Nrf2-GPX4 i % 15 S8 70T, §1 1)
Z 0 B T RE A BRAE T, SN SR BB YT COPD 24t
FERERY, DNA HH 3 i i g XU 480 2 (DNA diox-
ygenase ten-eleven translocation 2, TET2) s& — ff &
L DNA 22 H 3L (L , COPD & 3 fiti 4 41 TET2
FIE T, Zeng SR B, TET2 J8 i 52 484k 1 47
k25 COPD kAt 12w, Jig 4R 5 56 IF B TET2 %t
GPX4 J3 3 F R ¥ 2 WAL B Ve 1 B RIA
% GSH/GPX4 Hli R P A AAE F I 2RS0T, i
TET2 W3 in GSH #E 35 3 i Jéil & #& T CS /N B
S T8 IR S R R, HLS EF AR N BROAH L
TET?2 J (R i b BRI A7 05 26 B S PG . N- 21 Bk
RIR(NAC) B KA AL R A I 2 Ti697
WP 2R Ge s » K3 NAC ¥R 97 7T 2E 2% COPD
1513k R , [RIB NAC 18 7] DL T DNA & & /-3 AL
JeFa & DNAPY, £+t COPD /) B 74 K Ff NAC Bk
FHAIG 7 5 DNA FE AL 30 50 34T 36 97 AT ek 2 il
i 4 A 0 R4 i T O AR R B O R R
GPX4 ik , [H] I 22 /i CSE % 5 1) COPD Jifi <, fit A1
ANFIETR AR B L BAR G T T A R =
Re 90 PUAALTIIE F B AL )T ik mT & 3
—SPRACIR R JG R T IR IGIT 1, FEAE IR IR EAE
B0 FH 25 AT RS e, 2 Bl 25 I & 46 I AT e G
DNA H AL EE ] 7597 COPD 18 /7 1)
2.4  LEAIBIRERSET 5 % COPD & J&
Sirtuins (SIRTs ) Z % £ [ A& — 2 i JE AR 57 1 4
A 2B, B SIRT1~SIRT7 31X 7 4N ik 53 4H ik

S 22 ol S A 200 B T e 40U Y, /645 A 4 R AR IR
AR R R R FE S . DNA B E VAN B 40
P T A ORE S5 425, SIRT1 8L i85 COPD Hi3
Jiti E8 NF-kB AP A2 5 A Jot R A $7 98 P T AL
AAAER™ . SIRT3 B A1 B 4 ki /& ROS HL Ak
7 10 LA S BG4 RS A FH o Zhang S5P9HF FL 36
B, SIRT3 1] figd i b 1 A A AL 4 54 B (manga-
nese superoxide dismutase, MnSOD) >k #I il <18 I
J 4 A AR 1 28 R A S A0 B TR B SIRT3 AT ad itk 24
T A AZ 1 B0 R 5 5 3 AL — A A & i (induc-
ible nitric oxide synthase, iNOS) 2 [, Nrf2 A] A i &
FEETCSEIIRMER ARG, HEd &
SIRT3 (1)) 2 I F R R IE , dE— 0 KK Nief2
P A A FH . WSS 5 119 98 0 ) B2 |3 iNOS
ik, Nrf2/SIRT3/iNOS il A 2 Bl R+ 3 IR 51 ik
8 S TE BRI IR IT T R 2 — . H Il BERR O-
Pk 5t # % [ (glyceronephosphate O-acyltransferase,
GNPAT ) 1] 5 Jig Ji (7= A= W 3 0 40 il < 2R AE T2 1
ShME . LiZE B, SIRT4 ik GNPAT K 4= 4 2
T A T 3 i JFL o g DA B (G i A ROSS 7K T, 98 % Ml
Jii AR BT X CSE 5 3 kA0 T R IR S E .
YEE B AR A2 A OB B OB R IS CSE 5 5 14k
SETIAR G, FF H Li % E B SIRT4 ) 2% 4Bk A
ALOPERAET B R AR VE A, 88 1 LG o AR 1
FVAE AL S % R bR & 19 GNPAT i 7] Jy COPD 5%
TRITFEAHEHT I 7 M) o SR I A0 PO TR 980 S
R 5 Wi COPD & 7 (1) B 22K 2, SIRTs X% 5 1
Z5FSRIERN T AW HREE LET- S 2R
AR, X HEPET I COPD RIR ML A 2E X, 2
N LA B i SR E R BT 5 COPD J7 THi 17
TEAR KRR BE -

3 MNESRE

BRAET AR T IWE T H b, BRACET R i i
A E A R C B UE W R S RSB TR AR =
KER, B =4 R ITHIE BT 7E R Bk JE T AT
RERMPRIIRE . BRE LI BRIET R AN A1, A
23R R A F BB L P AT T e #E COPD ¥
T JE A S (R IB AR AB 1 R COPD i it
FEIEARPLS] KRBT 5 RATARIRR . b T
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