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Screening of endoplasmic reticulum stress characteristic genes and immune infiltration mani-
festations in chronic obstructive pulmonary disease

ZHANG Shuang, LUO Chenyang, HE Zhiyi. (Department of Respiratory Medicine, the First Affiliated Hospital
of Guangxi Medical University, Nanning 530021, China)

Abstract Objective: To identify the core genes of endoplasmic reticulum stress (ERS) in chronic obstructive
pulmonary disease (COPD) using the bioinformatics, various machine learning algorithms and experimental vali-
dation. Methods: The microarray data GSE5058, GSE8545, and GSE19407 were downloaded from the GEO da-
tabase to identify differentially expressed genes (DEGs) between airway epithelial cells of COPD smokers and
non-smokers, and then the common DEGs were obtained after overlapping with ERS-related genes and enriched
for analysis. Three machine learning algorithms, LASSO, SVM-RFE, and RF, were used to screen the characteris-
tic genes, and their diagnostic performance was verified and evaluated in the GSE10006. Subsequently, immuno-
infiltration analysis was performed. Finally the IncRNA-miRNA-mRNA ceRNA network of key genes was con-
structed and the mRNA expression levels of lung tissue in the mouse emphysema model were verified. Results:
A total of 153 common DEGs were screened, of which 74 genes were up-regulated and 79 genes were down-regu-
lated. GO and KEGG analysis showed that ERs-DEGs were mainly enriched in ERS response, protein folding
and multiple inflammatory signaling pathways, and DO analysis was mainly enriched in pulmonary vascular oc-

clusive diseases and COPD and so on. Immunoinfiltration analysis showed that COPD samples were highly corre-
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lated with a variety of immune cell infiltrations. A total of 4 characteristic genes (including THBS1, BCL2,
USP13 and RNFT2) were finally identified by machine learning algorithms, and they showed good diagnostic
performance in both the training set and the validation set. At the same time, co-expressed mRNA and miRNA
were selected to construct the mRNA-miRNA interaction network. Reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) results showed that compared with the air exposure group mice, the mRNA expression
levels of THBS1 and RNFT2 in the lung tissues of emphysema mice induced by cigarette smoke exposure were
increased, and the mRNA expression levels of BCL2 and USP13 were decreased (all P<<0.05). Conclusion: TH-
BS1, BCL2, USP13 and RNFT2 may be the core genes formed by ERS during the pathogenesis of COPD, and
are expected to be targets for COPD immunotherapy.

Keywords chronic obstructive pulmonary disease; endoplasmic reticulum stress; immune infiltration; bioinfor-
matics
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