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锰诱导BV2细胞炎症活化与线粒体自噬有关
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摘要 目的：探究锰诱导的BV2细胞炎症活化是否与线粒体自噬有关。方法：小鼠小胶质细胞BV2予以不同浓度锰暴露

（0 μmol/L、50 μmol/L、100 μmol/L）12 h，并以1 μg /mL脂多糖（LPS）为阳性对照组；刃天青法检测细胞活性；荧光探针检测溶

酶体数量及荧光强度变化；透射电镜观察自噬变化；共聚焦显微镜观察溶酶体和线粒体荧光共定位的程度；蛋白免疫印迹

（western blotting）实验检测不同浓度锰暴露 12 h后细胞炎症蛋白NLRP3、自噬相关蛋白（p62、LC3-II/I）以及线粒体外膜蛋白

VDAC1的表达水平；线粒体自噬抑制剂巴弗洛霉素A1预处理验证锰暴露对自噬流及上述炎症标志蛋白表达的影响。结果：

BV2细胞染锰浓度≥50 μmol/L时，BV2细胞存活率下降，NLRP3表达上调（P＜0.01），溶酶体数量及与线粒体共定位显著增加

（P＜0.05）；锰暴露组VDAC1和自噬标志蛋白LC3-II/I的蛋白表达水平下降，p62的蛋白表达水平升高（P＜0.05）；巴弗洛霉素

A1预处理后，显著逆转除p62外的其他自噬标记蛋白表达（P＜0.05）。结论：50~100 μmol/L染毒剂量下，锰诱导BV2细胞炎症

活化和线粒体自噬增加；巴弗洛霉素A1抑制线粒体自噬可促进锰暴露诱导的BV2细胞炎症活化。
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Inflammatory activation of BV2 cells induced by manganese involving with mitophagy
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Abstract Objective: To investigate whether manganese-induced inflammatory activation in BV2 cells is associ-

ated with mitophagy. Methods: Mouse microglia cells BV2 were exposed to different concentrations of manga-

nese (0 μmol/L, 50 μmol/L and 100 μmol/L) for 12 h, and 1 μg/mL lipopolysaccharide (LPS) was used as a posi-

tive control group. Cell vialibility was detected by Alarmarblue assay and changes of lysosomal number and fluo-

rescence intensity were detected by fluorescent probe; autophagic changes were observed by transmission elec-

tron microscopy; the extent of lysosomal and mitochondrial fluorescence co-localization was observed by confo-

cal microscopy; western blotting was performed to detect the expression levels of cellular inflammatory proteins

NLRP3, autophagy-related proteins (p62, LC3-II/I), and mitochondrial outer membrane protein VDAC1 after 12

h of exposure to different concentrations of manganese. Mitophagy inhibitor Bafilomycin A1 pretreatment veri-

fied the effect of manganese exposure on autophagic flow and the aforementioned inflammatory hallmarks pro-

tein expression. Results: When BV2 cells were exposed to manganese at concentrations greater than 50 μmol/L,

the BV2 cell survival rate was decreased, NLRP3 expression was increased (P＜0.01), and the number of lyso-

somes and their co-localization with mitochondria significantly were increased (P＜0.05). The protein expression

levels of VDAC1 and autophagy marker protein LC3-II/I were decreased and p62 was increased in the manga-

nese-exposed group (P＜0.05). Bafilomycin A1 pretreatment significantly reversed the autophagy marker protein
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expression except p62 (P＜0.05). Conclusion: Manganese induces inflammatory activation in BV2 cells and in-

creases mitophagy at 50- 100 μmol/L exposure dose. Inhibition of mitophagy by Bafilomycin A1 can promote

manganese exposure-induced inflammatory activation in BV2 cells.

Keywords manganese; inflammation; mitophagy; microglia cells

锰广泛分布在地壳中，是机体可能必需微量元

素[1]。锰参与多种生理过程，包括免疫反应、血糖调

节和活性氧（reactive oxygen species, ROS）的稳态

等[2-3]。适当的锰水平对于生命是必要的，但过量或

长期低剂量的锰暴露可产生毒性作用[4]。过量锰对

神经系统损伤显著，其毒性机制被认为与神经炎症

反应有关[3]。

小胶质细胞是中枢神经系统内的先天性免疫

细胞，具有巨噬细胞的特性，在脑疾病的发生和发

展中有着“双刃剑”的作用[5-6]。锰选择性蓄积在线

粒体并诱导氧化损伤[7]。当严重受损的线粒体未被

适当清除时，其有害内容物释放并介导炎症级联反

应 [8]。清除受损线粒体的过程称为线粒体自噬 [9]。

研究表明，锰诱导的炎症反应与自噬障碍有关[10-12]，

这是否与靶向清除受损线粒体（线粒体自噬）异常

有关却少有研究。本研究拟以BV2细胞为研究对

象，建立锰暴露模型，探讨线粒体自噬是否参与锰

诱导的BV2细胞炎症活化。

1 材料与方法

1.1 材料

BV2细胞（小鼠小胶质细胞，中国科学院细胞

库）；DMEM完全培养基、胎牛血清（美国Gibco公

司）；青霉素、链霉素（北京索莱宝科技有限公司）；

刃天青、四水氧化锰（MnCl2 ·4H2O）、巴弗洛霉素A1

（美国Sigma公司）；Anti-p62、Anti-LC3（Cell Signal-

ing Technology 公司）；Anti-NLRP3（美国 Abcam 公

司）；Anti-VDAC1（美国Santa Cruz公司）；倒置生物

显微镜（日本尼康公司）；EvosFL全自动荧光成像系

统；蛋白质免疫印迹法（western blotting）实验系统

（美国Bio-Rad公司）。

1.2 方法

1.2.1 细胞培养与细胞形态学观察 BV2细胞培

养体系为DMEM完全培养基（含10%胎牛血清、1%

青霉素、链霉素混合液），每2 d更换新鲜培养基，置

于37 ℃、5% CO2培养箱中培养。

将BV2细胞接种于 6孔板（2×105个/孔），培养

箱中生长 24 h。不同浓度锰（0 μmol/L、50 μmol/L、

100 μmol/L、200 μmol/L）处理12 h后，用倒置显微镜

观察细胞形态变化并拍照记录。

1.2.2 实验分组与刃天青法检测细胞存活率 根

据研究需要，细胞实验设计 4组，对照组（0 μmol/L

锰）、单独锰暴露组（50 μmol/L、100 μmol/L、200

μmol/L）、1 μg/mL 脂多糖（lipopolysaccharide, LPS）

作为炎症诱导阳性组及巴弗洛霉素A1干预组。干

预浓度基于（0 μmol/L、2.5 μmol/L、5 μmol/L、10 μmol/L、

20 μmol/L、40 μmol/L、80 μmol/L、100 μmol/L）巴弗

洛霉素A1分别处理2 h、4 h后确定的最大无作用剂

量。上述各组细胞取 100 μL对数生长期的BV2细

胞接种于 96孔板中（1×103个/孔），细胞贴壁后用含

上述试剂相应浓度的完全培养基处理，置于 37 ℃、

5% CO2细胞培养箱中培养12 h。各处理结束后，弃

去旧培养基，加入 100 μL 0.002%刃天青溶液，避光

孵育1 h，用酶标仪在590 nm处测荧光强度，并计算

细胞存活率，细胞存活率=（处理组荧光强度-空白

组荧光强度）/（对照组荧光强度-空白组荧光强度）×

100%。

1.2.3 荧光探针检测锰暴露对BV2细胞溶酶体数

量变化 BV2细胞接种于96孔板中，细胞贴壁后分

别染锰（0 μmol/L、50 μmol/L、100 μmol/L）、LPS

（1 μg/mL）各6 h、12 h。待处理时间到后，弃去旧培

养基，PBS 洗涤一遍。溶酶体探针用 PBS 按照 1∶
18 000的比例稀释后以 400 μL/孔加入并置于培养

箱避光孵育 30 min。酶标仪测定 635 nm波长处的

荧光强度，全自动荧光成像系统观察红色荧光的分

布范围和强度。上述实验操作均避光进行。

1.2.4 透射电子显微镜检测锰暴露对BV2细胞线

粒体形态影响 取处于对数期的BV2细胞种于6孔

板中（4×105个/孔），待稳定贴壁后，弃掉旧培养基，

加入锰（100 μmol/L）和LPS（1 μg/mL）处理 12 h后，

弃掉培养基，用PBS清洗细胞，加入 2.5%的常温戊

二醛固定液，常温固定 5 min，用细胞刮子沿一个固

定方向轻轻刮下细胞，转移至1.5 mL EP管中，常温

2 500 r/min离心2 min，弃去固定液后加入新的固定

液，将细胞团轻轻挑起，悬浮于固定液中。室温避

光固定 30 min，4 ℃保存条件送赛维尔公司制样及

检测。
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1.2.5 细胞蛋白收集及 western blotting 实验 将

BV2细胞种在6孔板（2×105个/孔），置于CO2细胞培

养箱贴壁生长。用不同浓度锰（0 μmol/L、50 μmol/L、

100 μmol/L）和 LPS（1 μg/mL）处理 BV2 细胞 12 h。

收集细胞后，使用BCA蛋白定量试剂盒进行蛋白定

量并确定上样量。经 SDS-PAGE凝胶电泳及转膜

后，用5%脱脂牛奶封闭1 h，按照相应抗体的推荐稀

释比例在 2.5%脱脂牛奶中加入一抗（p62 1∶1 000；

LC3 1∶500；NLRP3 1∶1 000；VDAC1 1∶1 000），摇

床上 4 ℃孵育过夜。洗膜 3次后，加入相应的二抗

（HRP山羊抗兔/鼠 IgG 1∶4 000），置于摇床上室温

孵育 2 h。洗膜 3次后，滴加适量化学发光液，使用

iBright蛋白免疫印迹成像系统对条带进行快速显

影，并用该系统对应软件对蛋白条带的灰度值进行

定量分析。

1.3 统计学方法 采用SPSS 25.0统计软件分析数

据，所有数据采用均数±标准差（x̄ ± s）表示；多组间

比较采用单因素方差分析，进一步组间两两比较采

用LSD-t法，以P＜0.05为差异有统计学意义。

2 结 果

2.1 锰暴露抑制BV2细胞活性

与对照组相比，50~200 μmol/L锰暴露组中BV2

细胞数量随着锰浓度的增加而减少，突起逐渐变短

甚至消失，细胞体积变小、皱缩，甚至脱离支持物底

壁（见图1A）。刃天青实验结果显示：BV2细胞存活

率随锰浓度升高而降低，且呈现明显的剂量依赖性

关系，当锰的浓度≥50 μmol/L时，细胞存活率显著

降低（P＜0.01）（见图 1B）。这说明当锰浓度超过

50 μmol/L时，BV2细胞的活性明显降低，且随着剂

量增加，活性下降更为显著。

A：不同浓度锰暴露12 h对BV2细胞形态的影响（×100）；B：不同浓度锰暴露12 h对BV2细胞存活率的影响；与对照组比

较，**P＜0.01，***P＜0.001；与50 μmol/L锰暴露组比较，###P＜0.001；与100 μmol/L锰暴露组比较，&&&P＜0.001，n=4。

图1 锰对BV2细胞活性的影响

2.2 锰暴露对BV2细胞溶酶体和线粒体的影响

溶酶体探针结果显示，随着时间的延长，溶酶

体红色荧光由颗粒状转变为密集团块状，同时，随

着锰暴露浓度不断升高，溶酶体红色荧光信号增强

（P＜0.001），提示染锰后溶酶体的数量增加（见图2A、

图 2B）。透射电镜结果显示，对照组核膜和线粒体

嵴清晰。50 μmol/L、100 μmol/L锰暴露组有大量线

粒体肿胀、嵴断裂和少量线粒体自噬小体。结果提

示染锰可诱导线粒体受损（见图2C）。

2.3 锰暴露对BV2细胞溶酶体和线粒体共定位的

影响

通过观察溶酶体和线粒体共定位结果，发现橙

色荧光强度随着锰浓度升高而增加，共定位荧光的

散点图量化结果Pearson系数升高（P＜0.05）。结果

提示溶酶体和线粒体的融合增加，溶酶体靶向降解

线粒体不断增加（见图3）。

2.4 锰暴露诱导BV2细胞炎症活化和线粒体自噬

激活

选择LPS作为阳性对照。Western blotting结果

表明，随着锰暴露浓度增加，与对照组相比，BV2细

胞炎症活化标记物NLRP3表达水平显著增高（P＜

0.01），提示锰暴露诱导BV2细胞炎症活化，自噬标

记蛋白LC3-II/I和VDAC1蛋白表达水平下降（P＜

0.05），自噬溶酶体连接蛋白p62的表达水平明显上

升（P＜0.01），见图4。结合透射电镜、荧光探针和溶

酶体与线粒体荧光共定位的结果，提示锰暴露可激

活BV2细胞线粒体自噬。
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2.5 巴弗洛霉素A1工作浓度与时间确定

不同浓度巴弗洛霉素A1处理BV2细胞 2 h，当

浓度为 10 μmol/L、20 μmol/L 时，可抑制细胞活性

（P＜0.05）；处理BV2细胞4 h，当浓度为100 μmol/L

时，能抑制细胞生长（P＜0.05）（见图 5）。综合上述

实验结果，结合时间与剂量反应，确定40 μmol/L的

巴弗洛霉素A1处理BV2细胞2 h进行后续实验。

2.6 锰暴露诱导线粒体自噬障碍促进BV2细胞炎

症活化

Western blotting结果表明，与锰暴露组相比，巴

弗洛霉素A1预处理后锰暴露组BV2细胞炎症活化

标记物NLRP3表达水平显著增高（P＜0.05），提示

巴弗洛霉素A1预处理后，锰暴露加重BV2细胞炎

症活化；p62、LC3-II/I和VDAC1蛋白表达水平明显

上升（P＜0.01），提示巴弗洛霉素A1可抑制锰暴露

诱导的线粒体自噬水平（见图6）。

A：不同浓度锰暴露6 h，12 h对BV2细胞溶酶体的数量影响（×400）；B：不同浓度锰暴露6 h，12 h对BV2细胞溶酶体荧光

强度的影响；与对照组比较，***P＜0.001；与50 μmol/L锰暴露组比较，##P＜0.01，###P＜0.001；与100 μmol/L锰暴露组比较，&P＜

0.05，比例尺=2.0 μm，n=4；C：透射电镜观察锰暴露12 h对BV2细胞线粒体的影响（×10 000），红色箭头表示线粒体自噬小体形

成。

图2 锰暴露对BV2细胞溶酶体和线粒体的影响

A：不同浓度锰暴露12 h对BV2细胞溶酶体和线粒体荧光共定位的形态影响（×400）；B：溶酶体和线粒体荧光共定位的定

量分析；与对照组比较，*P＜0.05，**P＜0.01，n=3。

图3 锰暴露12 h对BV2细胞溶酶体和线粒体共定位
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A：巴弗洛霉素A1预处理2 h后，染锰12 h对BV2细胞炎症和自噬相关蛋白表达变化的影响；B：对A中蛋白条带的定量分

析；与对照组比较，*P＜0.05，**P＜0.01；与100 μmol/L锰暴露组比较，#P＜0.05，##P＜0.01，###P＜0.001；与40 μmol/L巴弗洛霉素

A1组比较，&P＜0.05，&&P＜0.01，&&&P＜0.001，n=3。
图6 巴弗洛霉素A1预处理后锰暴露对BV2细胞炎症和自噬的影响

A：不同浓度锰暴露12 h对BV2细胞炎症和自噬相关蛋白条带变化；B：对A中蛋白条带的定量分析；与对照组比较，*P＜
0.05，**P＜0.01，***P＜0.001；与 50 μmol/L锰暴露组比较，##P＜0.01，###P＜0.001；与 100 μmol/L锰暴露组比较，&P＜0.05，&&P＜
0.01，&&&P＜0.001，n=3。

图4 锰暴露12 h对BV2细胞炎症和自噬的影响

A：不同浓度巴弗洛霉素A1处理2 h对BV2细胞存活率的影响；B：不同浓度巴弗洛霉素A1处理4 h对BV2细胞存活率的

影响；与0 μmol/L巴弗洛霉素A1比较，*P＜0.05，**P＜0.01，n=3。
图5 巴弗洛霉素A1对BV2细胞活性的影响
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3 讨 论

小胶质细胞炎性活化是锰诱导神经毒性较为

成熟的机制。本研究结果表明，随着锰浓度增加，

细胞活性呈剂量依赖性下降，炎症小体NLRP3表达

显著上调，提示锰诱导BV2细胞炎症活化，进而介

导锰的神经毒性。有文献报道，锰可增加N2a细胞

NLRP3表达进而促进神经炎症[13]。动物实验表明，

通过饮用水给予大鼠锰（200 mg/L，持续 5周）可增

加NLRP3和裂解的Caspase1和 IL-1β水平[14]。上述

研究表明，在不同模型中，锰可上调脑组织细胞NL-

RP3表达。研究锰诱导炎症激活的机制，可为与之

有关的神经炎症及神经损伤提供防治支持。

自噬是溶酶体参与的降解细胞内异常折叠蛋

白〔如 tau、β-淀粉样蛋白（amyloid β-protein，Aβ）〕、

受损细胞器（如线粒体、高尔基体等）并回收降解细

胞成分的进化保守过程[7]。其中，线粒体自噬靶向

清除受损的线粒体，对于线粒体质量控制和维护病

理应激下的正常细胞功能至关重要[15]。本研究中，

锰暴露后 p62 表达上调，而 LC3-II/I 和 VDAC1 表

达下调，透射电镜发现线粒体受损和线粒体自噬小

体形成，结合溶酶体的数量和溶酶体与线粒体的融

合增加，提示锰激活BV2细胞线粒体自噬发生。进

一步地，采用巴弗洛霉素 A1 抑制线粒体自噬体

—溶酶体融合后，线粒体自噬水平抑制的同时也增

加了炎症标志表达。有文献报道，锰暴露激活

PINK1/Parkin介导的线粒体自噬，并保护神经细胞

免受锰的损伤[16]。研究表明，锰可激活SH-SY5Y细

胞线粒体自噬，从而触发SH-SY5Y细胞凋亡[17]。上

述研究表明锰可激活线粒体自噬，但在不同模型中

产生的生物学效应不同。

在大多数情况下，自噬激活确保了饥饿或应激

条件下的细胞存活[7]。自噬通过调整细胞内细胞器

含量来保障免疫细胞发育、分化等功能，还可以通

过自噬受体识别泛素等标签促进炎症反应[18-19]。但

线粒体自噬与炎症的关系并不非常明确。线粒体

在机体固有免疫中发挥重要作用，其结构、功能受

损可影响机体炎症的发生、发展进程[20]。线粒体是

细胞ROS产生的主要部位，氧化应激是炎症发生的

重要诱因[21]。研究发现，槲皮素通过促进线粒体自

噬进而抑制小胶质细胞NLRP3炎症小体激活来预

防神经元损伤[22]。抑制线粒体自噬/自噬可以导致

ROS 产生的线粒体积累，从而激活 NLRP3 炎症小

体[23]。锰首先在线粒体中积累，诱导线粒体氧化应

激增加[24]。结合本研究所观察到的线粒体损伤及与

溶酶体共定位结果、自噬流的改变，我们推测锰诱

导线粒体损伤增加并激活线粒体自噬，诱导小胶质

细胞活化，NLRP3炎症小体表达，抑制线粒体自噬

水平可进一步加重锰诱导的炎症活化。这与 Wu

等[25]的研究结果一致。

综上，在本研究模型中，锰暴露可诱导BV2细

胞炎性活化，该过程伴随线粒体自噬发生；巴弗洛

霉素A1抑制线粒体自噬后，可促进锰暴露诱导的

BV2细胞炎症活化。
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