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Effect of mitochondrial oxidative stress on lead—exposed inflammatory activation of microglia
ZHOU Qin, LI Lifan, HUANG Dingbang, CHEN Kaiju, ZHANG Xiaoshun, CHEN Lixuan, LI Hecheng, MENG
Xiaojing. (Department of Occupational Health and Occupational Medicine, School of Public Health, Southern
Medical University, Guangzhou 510515, China)

Abstract Objective: To investigate the role and mechanism of mitochondrial oxidative stress in lead (Pb)-in-
duced microglial inflammation. Methods: BV2 microglia cells were divided into 4 groups and treated with 0
umol/L (control group), 1 umol/L, 5 umol/L and 10 umol/L lead acetate, respectively. The mRNA expression lev-
els of interleukin (IL)-6, IL-8 and tumor necrosis factor (7NF-e) in microglia were detected by reverse transcrip-
tion-quantitative PCR (RT-qPCR). The activation state of microglia and the expression of mitochondrial reactive
oxygen species (mtROS) were observed by immunofluorescence, and the mitochondrial membrane potential was
detected by JC-1. C57BL/6 mice were divided into control group, Pb exposure group (Pb group) (100 ppm), Mito-
TEMPO treatment group (MitoTEMPO group) (5 mg/kg), MitoTEMPO combined with Pb treatment group (Mito-
TEMPO+Pb group), and the levels of serum and cerebral cortex inflammatory factors IL-1B and TNF-a were de-
termined by enzyme-linked immunosorbent assay (ELISA). The levels of NLRP3, Caspase-1 and IL-1p in the
hippocampus of mice were determined by western blotting. Results: Pb could activate BV2 microglia cells. Com-
pared with the control group, the levels of IL-6, IL-8 and TNF-a mRNA in the Pb group were increased in a dose-

dependent manner, mtROS was increased, and mitochondrial membrane potential was decreased. MitoTEMPO
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could inhibit the activation of microglia in hippocampus of mice, decrease the levels of IL-18 and TNF-a in se-

rum and cerebral cortex, and increase the levels of NLRP3, Caspase-1 and IL-1 proteins in hippocampus (all P<<

0.05). Conclusion: Pb induces mitochondrial oxidative stress, which can activate microglia. The mechanism may

be related to NLRP3 inflammasome activation.
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T B O

NLRP3 % M /NMARTE Pb [ i 28 85 M b R 4 51 22
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N PO ] k% A R A 5 10 52 453 0 2 R4 1 W DA % /I8
T 2 R 4 R 2,

Pb & — it i A7 75 1 2 8 V5 e, AR 5 1
Btk Pb B 8% 0TS /N T, A5/ B 5 4H B
AR 21 M1 BLIEALM Y, i & IL-1B TNF-a A1 IL-6
S5 i DR (R RE TS, AT S B 2 B PR TNF-a
T B W T A = A AT 5 5 R 5 oA
FRHES RGE", 2 55 AT PR FE PRI 48 28 R )Y, B
28 5| R AR 4 SO I T B 2 T A B SE TR
NLRP3 58 iE /NMABIE TE 1 48 2 4050 ke 81 24
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1% ff mtROS T 57 , £& A4 JI5E B A P A , Mito TEM-
PO 7] #1l Pb T 2 1)/ RIS K R 7 J2 98 ] 1
IL- 1B #1 TNF-a 7K *¥- #1{& & NLRP3. Caspase-1.IL-
1B 25 /K P17, 26 B P 3 e 2 b A4 S8 A o A /)
Jiz o3 40 B » LML) AT B85 NLRP3 48R /M i A%
Hx.

/N2 5 40 A R R 4 2R G A A G A
FH 5 B ) ML R /0 s J 440 B P 98 R S . HH 9y ¥ B
B, T3 TL- 10 Al TL-6 %5 28 5E K 1+, 412 328 A Y
RAE o FEAHEFT A, Pb AT A /N i o 40 L 75 4L , 7 i
JO7 24 B B A 3 R, SRk G 22 HL AR, /N R o 4 B A
TEACRAS 8 IL-6 . IL-8 . TNF-o. mRNA F ik 75 , iX
tj Magdalena %" 7t 45 S ARL . B4 () 1E AR
RN N P47 R B = 0 B HE ROS R Ca™ 45, 5 TR 3R
W, J5 I LR AR B I3 1 5 3 FL (mPTP) JF UK
PR B A AR, 51 AR P 1 S AL 3R 45
FIA5 1L, S EUROS BRI, 18 5 S8 AL I T3R8 ) 3
Ve, 4R R R RAR RS o 7R Bm  ROS /K F
B (A ) mPTP A ] 5 8 ROS 18 £k i
R AR, & A B ™. fEARBE T, B A
Pb ¥4 & [ T+ /1, mtROS 7K ~F B 2 b T, 20 A i
L2 B4 4% . $E7 Pb AT 5 B0/ 5 41 i 28 67 444
TR, AR T RE S o

MitoTEMPO s& — P £ ¥ A 58 7 Jt S8 455 A
B F B 1k e b AR S AL IR E R T FEARTF T,
Pb Kb 2 AT 4 /)N BRIt X /DN 5T 40 P 2 IV AR AS
J AR 38 K, SRGE 1Y 22 HL AR A 5 /)N BRI TS R R =
TNF-o 7K F-3# 55 , MitoTEMPO &b 38 J5 55 70 /N K Jofi
I B SRR D S B AN, ELRT R0 Pb 51 I iE K&
i 57 |2 TNF-a 7K P34 & , 3278 MitoTEMPO 1] 2% fi#
Pb 5 201 /0N 5 5 241 B 380 A0 28 1 TR R T, X
Thangaraj <™ [P Bff 70 25 S AHALL . B 5T i 38 7] < [
A S EUN R B AN A, RRLAA 2 3, 1T MitoTEM-

PORE/NMACR AR PN R AW, 2 K A
ity 41 43 98 RE S N 1) 9% R T IR 8 R ) ph 42
TG~ /DN T 4 L AR T e o A i rh 3 A R0 R R
2 RAE MR AEZYIAHK, NLRP3 %4 1 /NMATE Pb
RN AP BN T R EEEAY . TEARDT
FC 1, MitoTEMPO 1] K & Pb 3 £ /)8 i NLRP3 %48
iE /INMA K2 R U B U1 2] [ Caspase-1 Fl IL- 1B 3214 1
%, $#& 7K MitoTEMPO 1] i it $1 il NLRP3 78 4 /] A
BOE , R PO I S B MEAE T o 7015 B s A Y
K, MitoTEMPO g & 3 #1 il NLRP3 % ¥ /)M A
TG AL, o35 2 gl iR I, 7 BF L ik , Mito-
TEMPO Tii &b 20T L) S 2 Bl (LPS) i 3 11/ i
J5 2 il mtROS 72 4 FINLRP3 %8 P /NMABED . iX
SERIF 75 45 T35 5 R0 AT 4k A A .

AW 5T 2% B, MitoTEMPO A I8 #% Pb 5 2517 /)N
Ji¢ 5 441 v , f NLRP3 2 R i# Rl ¥~ Caspase- 1.
IL- 1B ¥ £ 1 R IA 52 23] , 284 K- IL- 1B A1 TNF-a
KT FEAR , B AR AP 2 T 1 L 3275 Pb S 3L KR AL
IR AR /I8 e S5 A s 5 FEATL I T BE 5 NLRP3 %%
E/MEA 5%, T AR P A B M TR LT K.
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