一种具有双酶活性纳米酶的制备与催化性能初探

Preparation and catalytic performance of a dual-enzyme activity nanozyme

  • 摘要:
    目的  制备一种具有双酶活性的纳米酶,并探究其催化性能。
    方法  以水热法合成铁基金属有机骨架MIL-100,在冰浴条件下与四氯金酸水溶液(HAuCl4)混合搅拌,通过新制硼氢化钠(NaBH4)还原,在MIL-100表面原位生长超小粒径金纳米粒(Au NPs),得到双酶活性纳米酶Au NPs@MIL-100。采用透射电子显微镜(TEM)、紫外—可见分光光度计(UV-vis)、傅里叶红外光谱仪(FTIR)、动态光散射纳米粒度电位仪(DLS)和X射线光电子能谱(XPS)对纳米酶进行表征;通过UV-vis测试纳米酶的催化性能;通过激光扫描共聚焦显微镜(CLSM)观察纳米酶在细胞中生成活性氧(ROS)的能力。
    结果  合成的纳米酶Au NPs@MIL-100粒径大小约为70 nm,其中Au NPs粒径小于5 nm;MIL-100能催化过氧化氢(H2O2)生成羟基自由基(•OH)发挥类过氧化物酶(POD)样活性,催化效果呈时间依赖性,20 min时催化反应达到稳定;Au NPs能催化葡萄糖生成H2O2发挥类葡萄糖氧化酶(GOx)样活性,催化效果呈时间依赖性;双酶活性纳米酶Au NPs@MIL-100能在三阴性乳腺癌(4T1)细胞中高效产生ROS。
    结论  成功制备双酶活性纳米酶Au NPs@MIL-100,该纳米酶同时具备POD样和GOx样活性,在4T1细胞中能提高产生ROS的能力,为构建肿瘤饥饿治疗纳米载药系统提供了一种新的思路。

     

    Abstract:
    Objective  To prepare a nanozyme with dual-enzyme activity and investigate the catalytic performance.
    Methods  An iron-based metal-organic framework MIL-100 was synthesized via hydrothermal method. Subsequently, MIL-100 was mixed with aqua solution of chloroauric acid (HAuCl4) under ice bath condition, where ultra-small gold nanoparticles (Au NPs) were grown in situ on its surface through freshly prepared sodium borohydride (NaBH4) reduction to obtain a dual-enzyme activity nanozyme Au NPs@MIL-100 composite. Transmission electron microscopy (TEM), ultraviolet-visible spectrophotometry (UV-vis), fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and X-ray photoelectron spectrometer (XPS) were used for characterizing the nanozyme. Furthermore, the catalytic performance of nanozyme was evaluated by UV-vis spectroscopy and the capacity of the nanozyme to generate reactive oxygen species (ROS) in cells was observed using confocal laser scanning microscopy (CLSM).
    Results  The synthesized Au NPs@MIL-100 nanozyme had a particle size of approximately 70 nm, with the surface-attached Au NPs size less than 5 nm. Moreover, MIL-100 demonstrated peroxidase-like (POD) activity by catalyzing hydrogen peroxide (H2O2) to generate hydroxyl radicals (·OH), showing time-dependent catalytic effects and reaching a steady state at 20 min; while the Au NPs exhibited glucose oxidase-like (GOx) activity by catalyzing the oxidation of glucose to produce H2O2, similarly showing time-dependent catalytic effects. The dual-enzyme nanozyme Au NPs@MIL-100 could efficiently generate ROS in triple-negative breast cancer (4T1) cells.
    Conclusion  The dual-enzyme activity nanozyme Au NPs@MIL-100 was successfully prepared. Au NPs@MIL-100, with both POD-like and GOx-like activities, can enhance the level of ROS in 4T1 cells, which offers a new strategy for the development of tumor starvation therapy nanocarrier systems.

     

/

返回文章
返回